Thu, 04 Dec 2025

12:00 - 13:00
C5

Flowing to Free Boundary Minimal Surfaces

Christopher Wright
(Mathematical Institute - University of Oxford)
Abstract

In this talk, I will discuss an approach to free boundary minimal surfaces which comes out of recent work by Struwe on a non-local energy, called the half-energy. I will introduce the gradient flow of this functional and its theory in the already studied case of disc type domains, covering existence, uniqueness, regularity and singularity analysis and highlighting the striking parallels with the theory of the classical harmonic map flow. Then I will go on to present new work, joint with Melanie Rupflin and Michael Struwe, which extends this theory to all compact surfaces with boundary. This relies upon combining the above ideas with those of the Teichmüller harmonic map flow introduced by Rupflin and Topping.

Thu, 20 Nov 2025

12:00 - 13:00
C5

Existence and weak-strong uniqueness of measure solutions to Euler-alignment/Aw-Rascle-Zhang model of collective behaviour

Ewelina Zatorska
(University of Warwick)
Abstract
I will discuss the multi-dimensional Euler–alignment system with a matrix-valued communication kernel, which is motivated by models of anticipation dynamics in collective behaviour. A key feature of this system is its formal equivalence to a nonlocal variant of the Aw–Rascle–Zhang (ARZ) traffic model, in which the desired velocity is modified by a nonlocal gradient interaction. The global-in-time existence of measure solutions to both formulations,  can be obtained via a single degenerate pressureless Navier–Stokes approximation. I will also discuss a weak–strong uniqueness principle adapted to the pressureless setting and to nonlocal alignment forces. As a consequence of these results we can rigorously justify the formal correspondence between the nonlocal ARZ and Euler–alignment models: they arise from the same inviscid limit, and the weak–strong uniqueness property ensures that, whenever a classical solution exists, both formulations coincide with it.


 

Thu, 06 Nov 2025

12:00 - 13:00
C5

Ricci curvature and orientability

Camillo Brena
(IAS Princeton)
Abstract

This talk will focus on various definitions of orientability for non-smooth spaces with Ricci curvature bounded from below. The stability of orientability and non-orientability will be discussed. As an application, we will prove the orientability of 4-manifolds with non-negative Ricci curvature and Euclidean volume growth. This work is based on a collaboration with E. Bruè and A. Pigati.

Thu, 30 Oct 2025

12:00 - 13:00
C5

Differentiation on metric spaces

Pietro Wald
(University of Warwick)
Abstract
Cheeger’s seminal 1999 paper initiated the study of metric measure spaces that admit a generalised differentiable structure. In such spaces, Lipschitz functions—real-valued and, in some cases, Banach-valued—are differentiable almost everywhere. Since then, much work has gone into determining the precise geometric and analytic conditions under which such structures exist. In this talk, I will give a brief overview of the theory and present new results from joint work with David Bate.
Thu, 22 May 2025

11:00 - 12:00
C5

Modal group theory

Wojciech Wołoszyn
(University of Oxford)
Abstract

I introduce modal group theory, where one investigates the class of all groups using embeddability as a modal operator. By employing HNN extensions, I demonstrate that the modal language of groups is more expressive than the first-order language of groups. Furthermore, I establish that the theory of true arithmetic, viewed as sets of Gödel numbers, is computably isomorphic to the modal theory of finitely presented groups. Finally, I resolve an open question posed by Sören Berger, Alexander Block, and Benedikt Löwe by proving that the propositional modal validities of groups constitute precisely the modal logic S4.2.

Thu, 19 Jun 2025

11:00 - 12:00
C5

30 years since the Galois characterisation of ℚₚ — Part II.

Benedikt Stock
(University of Oxford)
Abstract

Building on Leo’s talk last week, I will present the full Galois characterisation of henselianity and introduce some of the ‘explicit’ ingredients he referred to during his presentation. In particular, I will describe a Galois cohomology-inspired criterion for distinguishing between different characteristics. I will then outline the full proof of the Galois characterisation of p-adically closed fields, indicating how each of the ingredients enters the argument.

Thu, 12 Jun 2025

11:00 - 12:00
C5

30 years since the Galois characterisation of ℚₚ — Part I

Leo Gitin
(University of Oxford)
Abstract

The absolute Galois group of ℚₚ determines its field structure: a field K is p-adically closed if and only if its absolute Galois group is isomorphic to that of ℚₚ. This Galois-theoretic characterisation was proved by Koenigsmann in 1995, building on previous work by Arason, Elman, Jacob, Ware, and Pop. Similar results were obtained by Efrat and further developed in his 2006 book.

Our project aims to provide an optimal proof of this characterisation, incorporating improvements and new developments. These include a revised proof strategy; Efrat's construction of valuations via multiplicative stratification; the Galois characterisation of henselianity; systematic use of the standard decomposition; and the function field analogy of Krasner-Kazhdan-Deligne type. Moreover, we replace arguments that use Galois cohomology with elementary ones.

In this talk, I will focus on two key components of the proof: the construction of valuations from rigid elements, and the role of the function field analogy as developed via the non-standard methods of Jahnke-Kartas.

This is joint work with Jochen Koenigsmann and Benedikt Stock.

Thu, 05 Jun 2025

11:00 - 12:00
C5

Relativistically invariant wave equations in the realist theory

Tristram de Piro
Abstract
Boris Zilber showed that you can build a logical structure around the relativistic Klein-Gordon and Dirac equations from quantum field theory. I will present the parallel realist theory, favoured by Einstein, to the Copenhagen interpretation. Starting from the requirements of Rutherford's principle for atomic systems and Maxwell's equations, I will show that there exist unique relativistically invariant wave equations for charge and current, with non-vacuum solutions, which predict the proportionality in the Balmer series.
Thu, 29 May 2025

11:00 - 12:00
C5

Fields with the absolute Galois group of Q

Jochen Koenigsmann
(University of Oxford)
Abstract
This is a report on work in progress aiming to prove the conjecture that if the absolute Galois group of a field K is isomorphic to that of \Q then K admits a (possibly trivial) henselian valuation with divisible value group and residue field \Q. What I can prove is that such a field K has a unique ordering and unique p-adic valuations, and that K satisfies Cebotarev's density theorem, Kronecker-Weber, Hasse-Minkowski, quadratic reciprocity etc.
We will show that our conjecture is equivalent to the birational version of Grothendieck's Section Conjecture over \Q, and we will discuss a model theoretic strengthening of our conjecture.
Thu, 15 May 2025

11:00 - 12:00
C5

A criterion for sharpness of the Elekes-Szabó theorem in positive characteristic

Lucas Nistor
(École Normale Supérieure )
Abstract

We establish that a criterion based on ring-theoretic amenability is both necessary and sufficient for the abelian version of the Elekes-Szabó theorem to be sharp in the case of positive characteristic. Moreover, the criterion is always sufficient. We provide illustrative examples in the theories ACF_p and DCF_0.

Subscribe to C5