Tue, 16 May 2017

12:45 - 13:30
C5

Pattern Formation in Non-Local Systems with Cross-Diffusion

Markus Schmidtchen
(Imperial College London)
Abstract

Multi-agent systems in nature oftentimes exhibit emergent behaviour, i.e. the formation of patterns in the absence of a leader or external stimuli such as light or food sources. We present a non-local two species crossinteraction model with cross-diffusion and explore its long-time behaviour. We observe a rich zoology of behaviours exhibiting phenomena such as mixing and/or segregation of both species and the formation of travelling pulses.

Thu, 04 May 2017
11:00
C5

On fields with the absolute Galois group of Q

Jochen Koenigsmann
(Oxford)
Abstract

.. showing that a field K is isomorphic to Q if it has the same absolute Galois group and if it satisfies a very small additional condition (very similar to my talk 2 years ago).

Tue, 02 May 2017

12:45 - 13:15
C5

Numerical Methods and Preconditioning for Reservoir Simulation

Thomas Roy
(Mathematical Institute)
Abstract

In this presentation, we give an overview of the numerical methods used in commercial oil and gas reservoir simulation. The models are described by flow through porous media and are solved using a series of nested numerical methods. Most of the computational effort resides in solving large linear systems resulting from Newton iterations. Therefore, we will go in greater detail about the iterative linear solvers and preconditioning techniques.

Note: This talk will cover similar topics to the InFoMM group meeting talks on Friday 28th April, but I will discuss more mathematical details for this JAMS talk.

Thu, 27 Apr 2017
11:00
C5

On cohomology of function fields

Adam Topaz
(Oxford)
Abstract


 This talk will discuss the so-called ``generic cohomology’’ of function fields over algebraically closed fields, from the point of view of motives and/or Zariski geometry. In particular, I will describe some interesting connections between cup products, algebraic dependence, and (geometric) valuation theory. As an application, I will mention a new result which reconstructs higher-dimensional function fields from their generic cohomology, endowed with some additional motivic data. 

   Everyone welcome!
 

Thu, 15 Jun 2017
16:00
C5

A discussion of Lurie's proof of the cobordism hypothesis

Adrian Clough
(University of Texas at Austin)
Abstract

Despite its fame there appears to be little literature outlining Lurie's proof sketched in his expository article "On the classification of topological field theories." I shall embark on the quixotic quest to explain how the cobordism hypothesis is formalised and give an overview of Lurie's proof in one hour. I will not be able to go into any of the motivation, but I promise to try to make the talk as accessible as possible. 

Thu, 25 May 2017
16:00
C5

Manifolds with a-corners & moduli space of Morse flows

Yixuan Wang
(Oxford University)
Abstract

Manifolds with ordinary boundary/corners have found their presence in differential geometry and PDEs: they form Man^b or Man^c category; and for boundary value problems, they are nice objects to work on. Manifolds with analytical corners -- a-corners for short -- form a larger category Man^{ac} which contains Man^c, and they can in some sense be viewed as manifolds with boundary at infinity.
In this talk I'll walk you through the definition of manifolds with corners and a-corners, and give some examples to illustrate how the new definition will help.

Thu, 18 May 2017

16:00 - 17:00
C5

Symplectic Cohomology for Quiver Varieties

Filip Zivanovic
(Oxford University)
Abstract

Floer (co)homology, invariant which recovers periodic orbits of a Hamiltonian system, is the central topic of symplecic topology at present. Its analogue for open symplecic manifolds is called symplectic (co)homology. Our goal is to compute this invariant for big family of spaces called Nakajima's Quiver Varieties, spaces obtained as hyperkahler quotients of representation spaces of quivers.
 

Tue, 07 Mar 2017
11:00
C5

Unlikely Intersections in families of elliptic curves

Laura Capuano
(Oxford)
Abstract


What makes an intersection likely or unlikely? A simple dimension count shows that two varieties of dimension r and s are non "likely" to intersect if r < codim s, unless there are some special geometrical relations among them. A series of conjectures due to Bombieri-Masser-Zannier, Zilber and Pink rely on this philosophy. I will speak about a joint work with F. Barroero (Basel) in this framework in the special case of a curve in a family of elliptic curves. The proof is based on Pila-Zannier method, combining diophantine ingredients with a refinement of a theorem of Pila and Wilkie about counting rational points in sets definable in o-minimal structures.
   Everyone welcome!
 

Subscribe to C5