Thu, 18 May 2017

16:00 - 17:00
C5

Symplectic Cohomology for Quiver Varieties

Filip Zivanovic
((Oxford University))
Abstract

Floer (co)homology, invariant which recovers periodic orbits of a Hamiltonian system, is the central topic of symplecic topology at present. Its analogue for open symplecic manifolds is called symplectic (co)homology. Our goal is to compute this invariant for big family of spaces called Nakajima's Quiver Varieties, spaces obtained as hyperkahler quotients of representation spaces of quivers.
 

Tue, 07 Mar 2017
11:00
C5

Unlikely Intersections in families of elliptic curves

Laura Capuano
(Oxford)
Abstract


What makes an intersection likely or unlikely? A simple dimension count shows that two varieties of dimension r and s are non "likely" to intersect if r < codim s, unless there are some special geometrical relations among them. A series of conjectures due to Bombieri-Masser-Zannier, Zilber and Pink rely on this philosophy. I will speak about a joint work with F. Barroero (Basel) in this framework in the special case of a curve in a family of elliptic curves. The proof is based on Pila-Zannier method, combining diophantine ingredients with a refinement of a theorem of Pila and Wilkie about counting rational points in sets definable in o-minimal structures.
   Everyone welcome!
 

Thu, 02 Mar 2017
11:00
C5

A New Technique for Definability in Function Fields.

Philip Dittmann
(Oxford)
Abstract


Generalising previous definability results in global fields using
quaternion algebras, I will present a technique for first-order
definitions in finite extensions of Q(t). Applications include partial
answers to Pop's question on Isomorphism versus Elementary Equivalence,
and some results on Anscombe's and Fehm's notion of embedded residue.

Thu, 23 Feb 2017
11:00
C5

Non-reduced schemes and Zariski Geometries

Alfonso Ruiz
(Oxford)
Abstract

Using results by Eisenbud, Schoutens and Zilber I will propose a model theoretic structure that aims to capture the algebra (or geometry) of a non reduced scheme over an algebraically closed field. 

Thu, 16 Feb 2017
11:00
C5

Model Theory of Shimura Varieties

Sebastian Eterovic
Abstract


Given a Shimura variety, I will show how to define a corresponding two-sorted structure. Based on work of Chris Daw and Adam Harris, we will study what is needed for the class of this structures to be categorical. Of course, an introduction to Shimura varieties will be given.
 

Thu, 16 Feb 2017
11:00
C5

Model Theory of Shimura Varieties

Sebastian Eterovic
Abstract


Given a Shimura variety, I will show how to define a corresponding two-sorted structure. Based on work of Chris Daw and Adam Harris, we will study what is needed for the class of this structures to be categorical. Of course, an introduction to Shimura varieties will be given.

Subscribe to C5