Thu, 26 Jan 2017

16:00 - 17:00
C5

The Loop Theorem of Papakyriakopoulos

Gareth Wilkes
(Oxford University)
Abstract

The study of 3-manifolds is founded on the strong connection between algebra and topology in dimension three. In particular, the sine qua non of much of the theory is the Loop Theorem, stating that for any embedding of a surface into a 3-manifold, a failure to be injective on the fundamental group is realised by some genuine embedding of a disc. I will discuss this theorem and give a proof of it.

Thu, 19 Jan 2017
11:00
C5

Towards a Ladder Theorem for Specialisations

Ugur Efem
Abstract


In this talk I will present some answers to the question when every specialisation from a \kappa-saturated extension of 
a Zariski structure is \kappa-universal? I will show that for algebraically closed fields, all specialisations from a \kappa-
saturated extension is \kappa-universal. More importantly, I will consider this question for finite and infinite covers of
Zariski structures. In these cases I will present a counterexample to show that there are covers of Zariski structures 
which have specialisations from a \kappa-saturated extension that are not \kappa-universal. I will present some natural 
conditions on the fibres under which all specialisations from a \kappa-saturated extension of a cover is \kappa-universal. 
I will explain how this work points towards a prospective Ladder Theorem for Specialisations and explain difficulties and 
further works that needs to be considered.
 

Tue, 24 Jan 2017

12:30 - 13:00
C5

Modelling congestion in supermarkets via queuing networks

Fabian Ying
(University of Oxford)
Abstract

In this talk, I will talk about my current approach to model customer movements and in particular congestion inside supermarkets using queuing networks. As the research question for my project is ‘How should one design supermarkets to minimize congestion?’, I will then talk about my current progress in understanding how the network structure can affect this dynamics.

Thu, 09 Feb 2017
11:00
C5

The topological closure of algebraic and o-minimal flows in compact tori

Kobi Peterzil
(Haifa)
Abstract

(joint work with Sergei Starchenko)

Let p:C^n ->A be the covering map of a complex abelian variety and let X be an algebraic variety of C^n, or more generally a definable set in an o-minimal expansion of the real field. Ullmo and Yafaev investigated the topological closure of p(X) in A in the above two  settings and conjectured that the frontier of p(X) can be described, when X is algebraic as finitely many cosets of real sub tori of A, They proved the conjecture when dim X=1. They make a similar conjecture for X definable in an o-minimal structure.

In recent work we show that the above conjecture fails as stated, and prove a modified version,  describing the frontier of p(X) as finitely many families of cosets of subtori. We prove a similar result when X is a definable set in an o-minimal structure and p:R^n-> T is the covering map of a real torus.  The proofs use model theory of o-minimal structures as well as algebraically closed valued fields.

Tue, 29 Nov 2016

12:45 - 13:30
C5

Community Detection in Annotated Bipartite Networks

Roxana Pamfil
(University of Oxford)
Abstract

A successful programme of personalised discounts and recommendations relies on identifying products that customers want, based both on items bought in the past and on relevant products that the customers have not yet purchased. Using basket-level grocery shopping data, we aim to use clustering ("community detection") techniques to identify groups of shoppers with similar preferences, along with the corresponding products that they purchase, in order to design better recommendation systems.


Stochastic block models (SBMs) are an increasingly popular class of methods for community detection. In this talk, I will expand on some work done by Newman and Clauset [1] that uses a modified SBM for community detection in annotated networks. In these networks, additional information in the form of node metadata is used to improve the quality of the inferred community structure. The method can be extended to bipartite networks, which contain two types of nodes and edges only between nodes of different types. I will show some results obtained from applying this method to a bipartite network of customers and products. Finally, I will discuss some desirable extensions to this method such as incorporating edge weights and assessing the relationship between metadata and network structure in a statistically robust way.


[1] Structure and inference in annotated networks, MEJ Newman and A Clauset, Nature Communications 7, 11863 (2016).


Note: This talk will cover similar topics to my presentation in the InFoMM group meeting on Friday, November 25 but it won't be exactly the same. I will focus more on the mathematical details for my JAMS talk.
 

Thu, 17 Nov 2016
11:00
C5

O-minimality and the Zilber-Pink conjecture for (pure) Shimura varieties

Chris Daw
(Oxford)
Abstract


In this talk, we will explain how the counting theorems of Pila and Wilkie lead to a conditional proof of the aforementioned conjecture. In particular, we will explain how to generalise the work of Habegger and Pila on a product of modular curves. 
Habegger and Pila were able to prove that the Zilber-Pink conjecture holds in such a product if the so-called weak complex Ax and large Galois orbits conjectures are true. In fact, around the same time, Pila and Tsimerman proved a stronger statement than the weak complex Ax conjecture, namely, the Ax-Schanuel conjecture for the $j$-function. We will formulate Ax-Schanuel and large Galois orbits conjectures for general Shimura varieties and attempt to imitate the Habegger-Pila strategy. However, we will encounter an additional difficulty in bounding the height of a pre-special subvariety.

This is joint work with Jinbo Ren.
 

Thu, 10 Nov 2016
11:00
C5

tba

Ehud Hrushovski.
Subscribe to C5