Thu, 29 May 2014
11:00
C5

"Specialisations of algebraically closed fields".

Ugur Efem
Abstract

Algebraically closed fields, and in general varieties are among the first examples
of Zariski Geometries.
I will consider specialisations of algebraically closed fields and varieties.
In the case of an algebraically closed field K, I will show that a specialisation
is essentially a residue map, res from K to a residue field k.  
In both cases I will show universality of the specialisation is controlled by the
transcendence degree of K over k.  

Thu, 22 May 2014
11:00
C5

"On the decidability of generalized power series fields"

Benjamin Rigler
Abstract

Given a field K and an ordered abelian group G, we can form the field K((G)) of generalised formal power series with coefficients in K and indices in G. When is this field decidable? In certain cases, decidability reduces to that of K and G. We survey some results in the area, particularly in the case char K > 0, where much is still unknown.

Thu, 22 May 2014
11:00
C5

"On the decidability of generalized power series fields"

Benjamin Rigler
Abstract

Given a field K and an ordered abelian group G, we can form the field K((G)) of generalised formal power series with coefficients in K and indices in G. When is this field decidable? In certain cases, decidability reduces to that of K and G. We survey some results in the area, particularly in the case char K > 0, where much is still unknown.

Tue, 03 Jun 2014
11:00
C5

Can rounding errors be beneficial for weather and climate models?

Dr Peter Dueben
(AOPP (Oxford University))
Abstract

Inexact hardware trades reduced numerical precision against a reduction

in computational cost. A reduction of computational cost would allow

weather and climate simulations at higher resolution. In the first part

of this talk, I will introduce the concept of inexact hardware and

provide results that show the great potential for the use of inexact

hardware in weather and climate simulations. In the second part of this

talk, I will discuss how rounding errors can be assessed if the forecast

uncertainty and the chaotic behaviour of the atmosphere is acknowledged.

In the last part, I will argue that rounding errors do not necessarily

degrade numerical models, they can actually be beneficial. This

conclusion will be based on simulations with a model of the

one-dimensional Burgers' equation.

Tue, 27 May 2014

15:00 - 16:00
C5

Locally compact hyperbolic groups

Dennis Dreesen
(Southampton University)
Abstract

The common convention when dealing with hyperbolic groups is that such groups are finitely

generated and equipped with the word length metric relative to a finite symmetric generating

subset. Gromov's original work on hyperbolicity already contained ideas that extend beyond the

finitely generated setting. We study the class of locally compact hyperbolic groups and elaborate

on the similarities and differences between the discrete and non-discrete setting.

Thu, 08 May 2014
11:00
C5

Demushkin Fields and Valuations

Kristian Strommen
Abstract

I will give an outline of ongoing work with Jochen Koenigsmann on recovering valuations from Galois-theoretic data. In particular, I will sketch a proof of how to recover, from an isomorphism G_K(2) \simeq G_k(2) of maximal pro-2 quotients of absolute Galois groups, where k is the field of 2-adic numbers, a valuation with nice properties. The latter group is a natural example of a so-called Demushkin group.
Everyone welcome! 
Mon, 16 Jun 2014

16:00 - 17:00
C5

A Hitchhiker's guide to Shimura Varieties

Tom Lovering
(Harvard University)
Abstract

Since their introduction, Shimura varieties have proven to be important landmarks sitting right at the crossroads between algebraic geometry, number theory and representation theory. In this talk, starting from the yoga of motives and Hodge theory, we will try to motivate Deligne's construction of Shimura varieties, and briefly survey some of their zoology and basic properties. I may also say something about the links to automorphic forms, or their integral canonical models.

Mon, 09 Jun 2014

16:00 - 17:00
C5

Intersections of progressions and spheres

Sean Eberhard
(University of Oxford)
Abstract

We state a conjecture about the size of the intersection between a bounded-rank progression and a sphere, and we prove the first interesting case, a result of Chang. Hopefully the full conjecture will be obvious to somebody present.

Subscribe to C5