Mon, 05 May 2014

16:00 - 17:00
C5

How common are solutions to equations?

Simon Myerson
(University of Oxford)
Abstract

Let $F \in \mathbb{Z}[x_1,\ldots,x_n]$. Suppose $F(\mathbf{x})=0$ has infinitely many integer solutions $\mathbf{x} \in \mathbb{Z}^n$. Roughly how common should be expect the solutions to be? I will tell you what your naive first guess ought to be, give a one-line reason why, and discuss the reasons why this first guess might be wrong.

I then will apply these ideas to explain the intriguing parallels between the handling of the Brauer-Manin obstruction by Heath-Brown/Skorobogotov [doi:10.1007/BF02392841] on the one hand and Wei/Xu [arXiv:1211.2286] on the other, despite the very different methods involved in each case.

Tue, 03 Jun 2014

17:00 - 18:00
C5

Counting commensurability classes of hyperbolic manifolds

Tsachik Gelander
(Weizmann Institute)
Abstract

Gromov and Piatetski-Shapiro proved the existence of finite volume non-arithmetic hyperbolic manifolds of any given dimension. In dimension four and higher, we show that there are about $v^v$ such manifolds of volume at most $v$, considered up to commensurability. Since the number of arithmetic ones tends to be polynomial, almost all hyperbolic manifolds are non-arithmetic in an appropriate sense. Moreover, by restricting attention to non-compact manifolds, our result implies the same growth type for the number of quasi- isometry classes of lattices in $SO(n,1)$. Our method involves a geometric graph-of-spaces construction that relies on arithmetic properties of certain quadratic forms.

A joint work with Arie Levit.

Mon, 19 May 2014

15:30 - 16:30
C5

Invariant random subgroups in groups of intermediate growth

Tatiana Smirnova-Nagnibeda
(Geneva)
Abstract

An invariant random subgroup in a (finitely generated) group is a

probability measure on the space of subgroups of the group invariant under

the inner automorphisms of the group. It is a natural generalization of the

the notion of normal subgroup. I’ll give an introduction into this actively

developing subject and then discuss in more detail examples of invariant

random subgrous in groups of intermediate growth. The last part of the talk

will be based on a recent joint work with Mustafa Benli and Rostislav

Grigorchuk.

Mon, 28 Apr 2014
15:30
C5

Outer space for right-angled Artin groups

Karen Vogtmann
(Cornell and Warwick)
Abstract

In order to study the group of (outer) automorphisms of

any group G by geometric methods one needs a well-behaved "outer

space" with an interesting action of Out(G). If G is free abelian, the

classic symmetric space SL(n,R)/SO(n) serves this role, and if G is

free non-abelian an appropriate outer space was introduced in the

1980's. I will recall these constructions and then introduce joint

work with Ruth Charney on constructing an outer space for any

right-angled Artin group.

Tue, 27 May 2014

17:00 - 18:00
C5

Finite subgroups of the classical groups

Michael Collins
(Oxford University)
Abstract

In 1878, Jordan showed that if $G$ is a finite group of complex $n \times n$ matrices, then $G$ has a normal subgroup whose index in $G$ is bounded by a function of $n$ alone. He showed only existence, and early actual bounds on this index were far from optimal. In 1985, Weisfeiler used the classification of finite simple groups to obtain far better bounds, but his work remained incomplete when he disappeared. About eight years ago, I obtained the optimal bounds, and this work has now been extended to subgroups of all (complex) classical groups. I will discuss this topic at a “colloquium” level – i.e., only a rudimentary knowledge of finite group theory will be assumed.

Subscribe to C5