Wed, 16 May 2018

16:00 - 17:00
C5

Thompson's Group

Sam Shepherd
(University of Oxford)
Abstract

Thompson's group F is a group of homeomorphisms of the unit interval which exhibits a strange mix of properties; on the one hand it has some self-similarity type properties one might expect of a really big group, but on the other hand it is finitely presented. I will give a proof of finite generation by expressing elements as pairs of binary trees.

Tue, 15 May 2018

12:45 - 13:30
C5

Complex singularities near the intersection of a free-surface and a rigid wall

Thomas Chandler
Abstract

It is known that in steady-state potential flows, the separation of a gravity-driven free-surface from a solid exhibits a number of peculiar characteristics. For example, it can be shown that the fluid must separate from the body so as to form one of three possible in-fluid angles: (i) 180°, (ii) 120°, or (iii) an angle such that the surface is locally perpendicular to the direction of gravity. These necessary separation conditions were notably remarked by Dagan & Tulin (1972) in the context of ship hydrodynamics [J. Fluid Mech., 51(3) pp. 520-543], but they are of crucial importance in many potential flow applications. It is not particularly well understood why there is such a drastic change in the local separation behaviours when the global flow is altered. The question that motivates this work is the following: outside a formal balance-of-terms arguments, why must (i) through (iii) occur and furthermore, what is the connections between them?

              In this work, we seek to explain the transitions between the three cases in terms of the singularity structure of the associated solutions once they are extended into the complex plane. A numerical scheme is presented for the analytic continuation of a vertical jet (or alternatively a rising bubble). It will be shown that the transition between the three cases can be predicted by observing the coalescence of singularities as the speed of the jet is modified. A scaling law is derived for the coalescence rate of singularities.

Thu, 10 May 2018

16:00 - 17:00
C5

Morse subsets of hierarchically hyperbolic spaces

Davide Spriano
(ETH Zurich)
Abstract

When dealing with geometric structures one natural question that arise is "when does a subset inherit the geometry of the ambient space"? In the case of hyperbolic space, the concept of quasi-convexity provides answer to this question. However, for a general metric space, being quasi-convex is not a quasi-isometric invariant. This motivates the notion of Morse subsets. In this talk we will motivate the definition and introduce some examples. Then we will introduce the class of hierarchically hyperbolic groups (HHG), and furnish a complete characterization of Morse subgroups of HHG. If time allows, we will discuss the relationship between Morse subgroups and hyperbolically-embedded subgroups. This is a joint work with Hung C. Tran and Jacob Russell.

Wed, 02 May 2018

16:00 - 17:00
C5

Treating vertex transitive graphs like groups

Alexander Wendland
(University of Warwick)
Abstract

In 2012 Eskin, Fisher and Whyte proved there was a locally finite vertex transitive graph which was not quasi-isometric to any connected locally finite Cayley Graph. This motivates the study of vertex transitive graphs from a geometric group theory point of view. We will discus how concepts and problems from group theory generalise to this setting. Constructing one framework in which problems can be framed so that techniques from group theory can be applied. This is work in progress with Agelos Georgakopoulos.

Tue, 01 May 2018

12:45 - 13:30
C5

Randomized algorithms for computing full, rank-revealing factorizations

Abinand Gopal
(University of Oxford)
Abstract

Over the past decade, the randomized singular value decomposition (RSVD)
algorithm has proven to be an efficient, reliable alternative to classical
algorithms for computing low-rank approximations in a number of applications.
However, in cases where no information is available on the singular value
decay of the data matrix or the data matrix is known to be close to full-rank,
the RSVD is ineffective. In recent years, there has been great interest in
randomized algorithms for computing full factorizations that excel in this
regime.  In this talk, we will give a brief overview of some key ideas in
randomized numerical linear algebra and introduce a new randomized algorithm for
computing a full, rank-revealing URV factorization.

Wed, 07 Mar 2018
16:00
C5

Least dilatation of pure surface braids

Marissa Loving
(University of Illinois)
Abstract

 The $n$-stranded pure surface braid group of a genus g surface can be described as the subgroup of the pure mapping class group of a surface of genus $g$ with $n$-punctures which becomes trivial on the closed surface. I am interested in the least dilatation of pseudo-Anosov pure surface braids. For the $n=1$ case, upper and lower bounds on the least dilatation were proved by Dowdall and Aougab—Taylor, respectively.  In this talk, I will describe the upper and lower bounds I have proved as a function of $g$ and $n$.

Thu, 03 May 2018
16:00
C5

TBA

Joshua Jackson
(Oxford University)
Wed, 28 Feb 2018

16:00 - 17:00
C5

Dehn functions of one-relator groups

Giles Gardam
(Technion – Israel Institute of Technology)
Abstract

It is a classical theorem of Magnus that the word problem for one-relator groups is solvable; its precise complexity remains unknown. A geometric characterization of the complexity is given by the Dehn function. I will present joint work with Daniel Woodhouse showing that one-relator groups have a rich collection of Dehn functions, including the Brady--Bridson snowflake groups on which our work relies.
 

Wed, 09 May 2018
16:00
C5

Traces and hermitian objects in higher category theory

Jan Steinebrunner
(Oxford University)
Abstract

Given an endomorphism f:X --> X of a 'dualisable' object in a symmetric monoidal category, one can define its trace Tr(f). It turns out that the trace is 'universal' among the scalars we can produce from f. To prove this we will think of the 1d framed bordism category as the 'walking dualisable object' (using the cobordism hypothesis) and then apply the Yoneda lemma.
Employing similar techniques we can define 'hermitian' objects (generalising hermitian vector spaces) and prove that there is a 1-1 correspondence between Hermitian structures on a fixed object X and self-adjoint automorphisms of X. If time permits I will sketch how this relates to hermitian K-theory.

While all results of the talk hold for infinity-categories, they work equally well for ordinary categories. Therefore no knowledge of higher category theory is needed to follow the talk.

Subscribe to C5