Thu, 20 Nov 2008

14:00 - 15:00
Comlab

Approximation of harmonic maps and wave maps

Prof Soeren Bartels
(University of Bonn)
Abstract

Partial differential equations with a nonlinear pointwise constraint defined through a manifold occur in a variety of applications: The magnetization of a ferromagnet can be described by a unit length vector field and the orientation of the rod-like molecules that constitute a liquid crystal is often modeled by a vector field that attains its values in the real projective plane thus respecting the head-to-tail symmetry of the molecules. Other applications arise in geometric

modeling, quantum mechanics, and general relativity. Simple examples reveal that it is impossible to satisfy pointwise constraints exactly by lowest order finite elements. For two model problems we discuss the practical realization of the constraint, the efficient solution of the resulting nonlinear systems of equations, and weak accumulation of approximations at exact solutions.

Thu, 13 Nov 2008

14:00 - 15:00
Comlab

Optimal domain decomposition methods (Neumann-Neumann or FETI types) for systems of PDEs

Frederic Nataf
(Universite Paris VI and CNRS UMR 7598)
Abstract

We focus on domain decomposition methods for systems of PDEs (versus scalar PDEs). The Smith factorization (a "pure" algebra tool) is used systematically to derive new domain decompositions methods for symmetric and unsymmetric systems of PDEs: the compressible Euler equations, the Stokes and Oseen (linearized Navier-Stokes) problem. We will focus on the Stokes system. In two dimensions the key idea is the transformation of the Stokes problem into a scalar bi-harmonic problem. We show, how a proposed domain decomposition method for the bi-harmonic problem leads to a domain decomposition method for the Stokes equations which inherits the convergence behavior of the scalar problem. Thus, it is sufficient to study the convergence of the scalar algorithm. The same procedure can also be applied to the three-dimensional Stokes problem.

Thu, 06 Nov 2008

14:00 - 15:00
Comlab

Asymptotics and complex singularities of the Lorenz attractor

Prof Divakar Viswanath
(University of Michigan, USA)
Abstract

The butterfly-shaped Lorenz attractor is a fractal set made up of infinitely many periodic orbits. Ever since Lorenz (1963) introduced a system of three simple ordinary differential equations, much of the discussion of his system and its strange attractor has adopted a dynamical point of view. In contrast, we allow time to be a complex variable and look upon such solutions of the Lorenz system as analytic functions. Formal analysis gives the form and coefficients of the complex singularities of the Lorenz system. Very precise (> 500 digits) numerical computations show that the periodic orbits of the Lorenz system have singularities which obey that form exactly or very nearly so. Both formal analysis and numerical computation suggest that the mathematical analysis of the Lorenz system is a problem in analytic function theory. (Joint work with S. Sahutoglu).

Thu, 30 Oct 2008

14:00 - 15:00
Comlab

A posteriori error estimation and adaptivity for an operator decomposition approach to conjugate heat transfer

Prof Simon Tavener
(Colorado State University)
Abstract
Operator decomposition methods are an attractive solution strategy for computing complex phenomena involving multiple physical processes, multiple scales or multiple domains. The general strategy is to decompose the problem into components involving simpler physics over a relatively limited range of scales, and then to seek the solution of the entire system through an iterative procedure involving solutions of the individual components. We analyze the accuracy of an operator decomposition finite element method for a conjugate heat transfer problem consisting of a fluid and a solid coupled through a common boundary. We derive accurate a posteriori error estimates that account for both local discretization errors and the transfer of error between fluid and solid domains. We use these estimates to guide adaptive mesh refinement. In addition, we show that the order of convergence of the operator decomposition method is limited by the accuracy of the transferred gradient information, and how a simple boundary flux recovery method can be used to regain the optimal order of accuracy in an efficient manner. This is joint work with Don Estep and Tim Wildey, Department of Mathematics, Colorado State University.
Thu, 16 Oct 2008

14:00 - 15:00
Comlab

50 Years of Scientific Computation in Oxford

Dr David Mayers
(University of Oxford)
Abstract

This is not intended to be a systematic History, but a selection of highlights, with some digressions, including:

The early days of the Computing Lab;

How the coming of the Computer changed some of the ways we do Computation;

A problem from the Study Groups;

Influence of the computing environment (hardware and software);

Convergence analysis for the heat equation, then and now.

Thu, 09 Oct 2008

14:00 - 15:00
Comlab

Barycentric coordinates and transfinite interpolation

Prof Michael Floater
(University of Oslo)
Abstract

Recent generalizations of barycentric coordinates to polygons and polyhedra, such as Wachspress and mean value coordinates, have been used to construct smooth mappings that are easier to compute than harmonic amd conformal mappings, and have been applied to curve and surface modelling.

We will summarize some of these developments and then discuss how these coordinates naturally lead to smooth transfinite interpolants over curved domains, and how one can also match derivative data on the domain boundary.

Thu, 05 Jun 2008

14:00 - 15:00
Comlab

Conic optimization: a unified framework for structured convex optimization

Prof François Glineur
(Universite catholique de louvain)
Abstract
Among optimization problems, convex problems form a special subset with two important and useful properties: (1) the existence of a strongly related dual problem that provides certified bounds and (2) the possibility to find an optimal solution using polynomial-time algorithms. In the first part of this talk, we will outline how the framework of conic optimization, which formulates structured convex problems using convex cones, facilitates the exploitation of those two properties. In the second part of this talk, we will introduce a specific cone (called the power cone) that allows the formulation of a large class of convex problems (including linear, quadratic, entropy, sum-of-norm and geometric optimization).
For this class of problems, we present a primal-dual interior-point algorithm, which focuses on preserving the perfect symmetry between the primal and dual sides of the problem (arising from the self-duality of the power cone).
Thu, 29 May 2008

14:00 - 15:00
Comlab

Dirichlet to Neumann maps for spectral problems

Prof Marco Marletta
(Cardiff University)
Abstract

Dirichlet to Neumann maps and their generalizations are exceptionally useful tools in the study of eigenvalue problems for ODEs and PDEs. They also have real physical significance through their occurrence in electrical impedance tomography, with applications to medical imagine, landmine detection and non-destructive testing. This talk will review some of the basic properties of Dirichlet to Neumann maps, some new abstract results which make it easier to use them for a wide variety of models, and some analytical/numerical results which depend on them, including detection and elimination of spectral pollution.

Subscribe to Comlab