Thu, 06 Mar 2003

14:00 - 15:00
Comlab

Exact real arithmetic

Dr Keith Briggs
(BTexact Technologies)
Abstract

Is it possible to construct a computational model of the real numbers in which the sign

of every computed result is corrected determined? The answer is yes, both in theory and in

practice. The resulting viewpoint contrasts strongly with the traditional floating

point model. I will review the theoretical background and software design issues,

discuss previous attempts at implementation and finally demonstrate my own python and

C++ codes.

Thu, 20 Feb 2003

14:00 - 15:00
Comlab

Improving spectral methods with optimized rational interpolation

Prof Jean-Paul Berrut
(University of Fribourg)
Abstract

The pseudospectral method for solving boundary value problems on the interval

consists in replacing the solution by an interpolating polynomial in Lagrangian

form between well-chosen points and collocating at those same points.

\\

\\

Due to its globality, the method cannot handle steep gradients well (Markov's inequality).

We will present and discuss two means of improving upon this: the attachment of poles to

the ansatz polynomial, on one hand, and conformal point shifts on the other hand, both

optimally adapted to the problem to be solved.

Thu, 06 Feb 2003

14:00 - 15:00
Comlab

Eigenmodes of polygonal drums

Prof Nick Trefethen
(University of Oxford)
Abstract

Many questions of interest to both mathematicians and physicists relate

to the behavior of eigenvalues and eigenmodes of the Laplace operator

on a polygon. Algorithmic improvements have revived the old "method

of fundamental solutions" associated with Fox, Henrici and Moler; is it

going to end up competitive with the state-of-the-art method of Descloux,

Tolley and Driscoll? This talk will outline the numerical issues but

give equal attention to applications including "can you hear the shape

of a drum?", localization of eigenmodes, eigenvalue avoidance, and the

design of drums that play chords.

\\

This is very much work in progress -- with graduate student Timo Betcke.

Fri, 24 Jan 2003

14:00 - 15:00
Comlab

Geometry, PDEs fluid dynamics, and image processing

Prof Tony Chan
(UCLA)
Abstract

Image processing is an area with many important applications, as well as challenging problems for mathematicians. In particular, Fourier/wavelets analysis and stochastic/statistical methods have had major impact in this area. Recently, there has been increased interest in a new and complementary approach, using partial differential equations (PDEs) and differential-geometric models. It offers a more systematic treatment of geometric features of mages, such as shapes, contours and curvatures, etc., as well as allowing the wealth of techniques developed for PDEs and Computational Fluid Dynamics (CFD) to be brought to bear on image processing tasks.

I'll use two examples from my recent work to illustrate this synergy:

1. A unified image restoration model using Total Variation (TV) which can be used to model denoising, deblurring, as well as image inpainting (e.g. restoring old scratched photos). The TV idea can be traced to shock capturing methods in CFD and was first used in image processing by Rudin, Osher and Fatemi.

2. An "active contour" model which uses a variational level set method for object detection in scalar and vector-valued images. It can detect objects not necessarily defined by sharp edges, as well as objects undetectable in each channel of a vector-valued image or in the combined intensity. The contour can go through topological changes, and the model is robust to noise. The level set method was originally developed by Osher and Sethian for tracking interfaces in CFD.

(The above are joint works with Jackie Shen at the Univ. of Minnesota and Luminita Vese in the Math Dept at UCLA.)

Thu, 19 Jun 2003

14:00 - 15:00
Comlab

A divergence-free element for finite element prediction of radar cross sections

Dr Austin Mack
(University of Technology)
Abstract

In recent times, research into scattering of electromagnetic waves by complex objects

has assumed great importance due to its relevance to radar applications, where the

main objective is to identify targeted objects. In designing stealth weapon systems

such as military aircraft, control of their radar cross section is of paramount

importance. Aircraft in combat situations are threatened by enemy missiles. One

countermeasure which is used to reduce this threat is to minimise the radar cross

section. On the other hand, there is a demand for the enhancement of the radar cross

section of civilian spacecraft. Operators of communication satellites often request

a complicated differential radar cross section in order to assist with the tracking

of the satellite. To control the radar cross section, an essential requirement is a

capability for accurate prediction of electromagnetic scattering from complex objects.

\\

\\

One difficulty which is encountered in the development of suitable numerical solution

schemes is the existence of constraints which are in excess of those needed for a unique

solution. Rather than attempt to include the constraint in the equation set, the novel

approach which is presented here involves the use of the finite element method and the

construction of a specialised element in which the relevant solution variables are

appropriately constrained by the nature of their interpolation functions. For many

years, such an idea was claimed to be impossible. While the idea is not without its

difficulties, its advantages far outweigh its disadvantages. The presenter has

successfully developed such an element for primitive variable solutions to viscous

incompressible flows and wishes to extend the concept to electromagnetic scattering

problems.

\\

\\

Dr Mack has first degrees in mathematics and aeronautical engineering, plus a Masters

and a Doctorate, both in computational fluid dynamics. He has some thirty years

experience in this latter field. He pioneered the development of the innovative

solenoidal approach for the finite element solution of viscous incompressible flows.

At the time, such a radical idea was claimed in the literature to be impossible.

Much of this early research was undertaken during a six month sabbatical with the

Numerical Analysis Group at the Oxford University Computing Laboratory. Dr Mack has

since received funding from British Aerospace and the United States Department of

Defense to continue this research.

Thu, 12 Jun 2003

14:00 - 15:00
Comlab

Pascal Matrices (and Mesh Generation!)

Prof Gilbert Strang
(MIT)
Abstract

In addition to the announced topic of Pascal Matrices (abstract below) we will speak briefly about more recent work by Per-Olof Persson on generating simplicial meshes on regions defined by a function that gives the distance from the boundary. Our first goal was a short MATLAB code and we just submitted "A Simple Mesh Generator in MATLAB" to SIAM.

This is joint work with Alan Edelman at MIT and a little bit with Pascal. They had all the ideas.

Put the famous Pascal triangle into a matrix. It could go into a lower triangular L or its transpose L' or a symmetric matrix S:


[ 1 0 0 0 ]
[ 1 1 1 1 ]
[ 1 1 1 1]
L = [ 1 1 0 0 ] L' =[ 0 1 2 3 ]S =[ 1 2 3 4]

[ 1 2 1 0 ]
[ 0 0 1 3 ]
[ 1 3 6 10]

[ 1 3 3 1 ]
[ 0 0 0 1 ]
[ 1 4 10 20]

These binomial numbers come from a recursion, or from the formula for i choose j, or functionally from taking powers of (1 + x).

The amazing thing is that L times L' equals S. (OK for 4 by 4) It follows that S has determinant 1. The matrices have other unexpected properties too, that give beautiful examples in teaching linear algebra. The proof of L L' = S comes 3 ways, I don't know which you will prefer:

1. By induction using the recursion formula for the matrix entries.
2. By an identity for the coefficients i+j choose j in S.
3. By applying both sides to the column vector [ 1 x x2 x3 ... ]'.

The third way also gives a proof that S3 = -I but we doubt that result.

The rows of the "hypercube matrix" L2 count corners and edges and faces and ... in n dimensional cubes.

Thu, 05 Jun 2003

14:00 - 15:00
Comlab

- moved -

Abstract

Seminar moved to Week 8, 19 June 2003.

Subscribe to Comlab