Tue, 21 Jun 2011
13:15
DH 1st floor SR

Hydrodynamics and elastodynamics of swimming bacteria

Henry Shum
(Centre for Mathematical Biology)
Abstract

Bacteria are ubiquitous on Earth and perform many vital roles in addition to being responsible for a variety of diseases. Locomotion allows the bacterium to explore the environment to find nutrient-rich locations and is also crucial in the formation of large colonies, known as biofilms, on solid surfaces immersed in the fluid. Many bacteria swim by turning corkscrew-shaped flagella. This can be studied computationally by considering hydrodynamic forces acting on the bacterium as the flagellum rotates. Using a boundary element method to solve the Stokes flow equations, it is found that details of the shape of the cell and flagellum affect both swimming efficiency and attraction of the swimmer towards flat no-slip surfaces. For example, simulations show that relatively small changes in cell elongation or flagellum length could make the difference between an affinity for swimming near surfaces and a repulsion. A new model is introduced for considering elastic behaviour in the bacterial hook that links the flagellum to the motor in the cell body. This model, based on Kirchhoff rod theory, predicts upper and lower bounds on the hook stiffness for effective swimming.

Tue, 07 Jun 2011
13:15
DH 1st floor SR

Modelling Viral Persistence in the Presence of Host Immunity in Chronic HTLV-I Infection

Aarom Lim
(University of Oxford))
Abstract

Human T-lymphotropic virus type I (HTLV-I) is a persistent human retrovirus characterised by a high proviral load and risk of developing ATL, an aggressive blood cancer, or HAM/TSP, a progressive neurological and inflammatory disease. Infected individuals typically mount a large, chronically activated HTLV-I-specific CTL response, yet the virus has developed complex mechanisms to evade host immunity and avoid viral clearance. Moreover, identification of determinants to the development of disease has thus far been elusive.

 This model is based on a recent experimental hypothesis for the persistence of HTLV-I infection and is a direct extension of the model studied by Li and Lim (2011). A four-dimensional system of ordinary differential equations is constructed that describes the dynamic interactions among viral expression, infected target cell activation, and the human immune response. Focussing on the particular roles of viral expression and host immunity in chronic HTLV-I infection offers important insights to viral persistence and pathogenesis.

Thu, 09 Feb 2012

16:00 - 17:00
DH 1st floor SR

Shapes formed by Interacting Cracks

Karen Daniels
(North Carolina State University)
Abstract

Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated stress geometries and different microscopic mechanisms, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths. We investigate the origins of this widely observed "en passant" crack pattern by fracturing a rectangular slab which is notched on each long side and then subjected to quasistatic uniaxial strain from the short side. The two cracks propagate along approximately straight paths until they pass each other, after which they curve and release a lens-shaped fragment. We find that, for materials with diverse mechanical properties, each curve has an approximately square-root shape, and that the length of each fragment is twice its width. We are able to explain the origins of this universal shape with a simple geometrical model.

Thu, 03 Nov 2011

16:00 - 17:00
DH 1st floor SR

Wave propagation in heterogeneous reaction diffusion

John King
(University of Nottingham)
Abstract

The mechanisms for the selection of the propagation speed of waves

connecting unstable to stable states will be discussed in the

spatially non-homogeneous case, the differences from the very

well-studied homogeneous version being emphasised.

Thu, 19 Jan 2012

16:00 - 17:00
DH 1st floor SR

Inverse problems, wavelets, and linear viscoelasticity

Russell Davies
(Cardiff)
Abstract

It is an inherent premise in Boltzmann's formulation of linear viscoelasticity, that for shear deformations at constant pressure and constant temperature, every material has a unique continuous relaxation spectrum. This spectrum defines the memory kernel of the material. Only a few models for representing the continuous spectrum have been proposed, and these are entirely empirical in nature.

Extensive laboratory time is spent worldwide in collecting dynamic data from which the relaxation spectra of different materials may be inferred. In general the process involves the solution of one or more exponentially ill-posed inverse problems.

In this talk I shall present rigorous models for the continuous relaxation spectrum. These arise naturally from the theory of continuous wavelet transforms. In solving the inverse problem I shall discuss the role of sparsity as one means of regularization, but there is also a secondary regularization parameter which is linked, as always, to resolution. The topic of model-induced super-resolution is discussed, and I shall give numerical results for both synthetic and real experimental data.

The talk is based on joint work with Neil Goulding (Cardiff University).

Thu, 24 Nov 2011

16:00 - 17:00
DH 1st floor SR

Coupled problem of dam-break flow

Alexander Korobkin
(UEA)
Abstract

Initial stage of the flow with a free surface generated by a vertical

wall moving from a liquid of finite depth in a gravitational field is

studied. The liquid is inviscid and incompressible, and its flow is

irrotational. Initially the liquid is at rest. The wall starts to move

from the liquid with a constant acceleration.

It is shown that, if the acceleration of the plate is small, then the

liquid free surface separates from the wall only along an

exponentially small interval. The interval on the wall, along which

the free surface instantly separates for moderate acceleration of the

wall, is determined by using the condition that the displacements of

liquid particles are finite. During the initial stage the original

problem of hydrodynamics is reduced to a mixed boundary-value problem

with respect to the velocity field with unknown in advance position of

the separation point. The solution of this

problem is derived in terms of complete elliptic integrals. The

initial shape of the separated free surface is calculated and compared

with that predicted by the small-time solution of the dam break

problem. It is shown that the free surface at the separation point is

orthogonal to the moving plate.

Initial acceleration of a dam, which is suddenly released, is calculated.

Thu, 27 Oct 2011

16:00 - 17:00
DH 1st floor SR

Rogue Waves, Vortices and Polynomials

Peter Clarkson
(University of Kent)
Abstract

In this talk I shall discuss special polynomials associated with rational solutions of the Painlevé equations and of the soliton equations which are solvable by the inverse scattering method, including the Korteweg-de Vries, Boussinesq and nonlinear Schrodinger equations. Further I shall illustrate applications of these polynomials to vortex dynamics and rogue waves.

The Painlevé equations are six nonlinear ordinary differential equations that have been the subject of much interest in the past thirty years, and have arisen in a variety of physical applications. Further the Painlevé equations may be thought of as nonlinear special functions. Rational solutions of the Painlevé equations are expressible in terms of the logarithmic derivative of certain special polynomials. For the fourth Painlevé equation these polynomials are known as the generalized Hermite polynomials and generalized Okamoto polynomials. The locations of the roots of these polynomials have a highly symmetric (and intriguing) structure in the complex plane.

It is well known that soliton equations have symmetry reductions which reduce them to the Painlevé equations, e.g. scaling reductions of the Boussinesq and nonlinear Schrödinger equations are expressible in terms of the fourth Painlevé equation. Hence rational solutions of these equations can be expressed in terms of the generalized Hermite and generalized Okamoto polynomials.

I will also discuss the relationship between vortex dynamics and properties of polynomials with roots at the vortex positions. Classical polynomials such as the Hermite and Laguerre polynomials have roots which describe vortex equilibria. Stationary vortex configurations with vortices of the same strength and positive or negative configurations are located at the roots of the Adler-Moser polynomials, which are associated with rational solutions of the Kortweg-de Vries equation.

Further, I shall also describe some additional rational solutions of the Boussinesq equation and rational-oscillatory solutions of the focusing nonlinear Schrödinger equation which have applications to rogue waves.

Thu, 20 Oct 2011

16:00 - 17:00
DH 1st floor SR

Three-wave interactions, quasipatterns and spatio-temporal chaos in the Faraday Wave experiment

Alastair Rucklidge
(University of Leeds)
Abstract

Three-wave interactions form the basis of our understanding of many

nonlinear pattern forming systems because they encapsulate the most basic

nonlinear interactions. In problems with two comparable length scales, such

as the Faraday wave experiment with multi-frequency forcing, consideration

of three-wave interactions can explain the presence of the spatio-temporal

chaos found in some experiments, enabling some previously unexplained

results to be interpreted in a new light. The predictions are illustrated

with numerical simulations of a model partial differential equation.

Subscribe to DH 1st floor SR