Thu, 05 Mar 2009
13:00
DH 3rd floor SR

Diffusion processes and coalescent trees.

Robert Griffiths
(Department of Statistics, Oxford)
Abstract

Diffusion process models for evolution of neutral genes have a particle dual coalescent process underlying them. Models are reversible with transition functions having a diagonal expansion in orthogonal polynomial eigenfunctions of dimension greater than one, extending classical one-dimensional diffusion models with Beta stationary distribution and Jacobi polynomial expansions to models with Dirichlet or Poisson Dirichlet stationary distributions. Another form of the transition functions is as a mixture depending on the mutant and non-mutant families represented in the leaves of an infinite-leaf coalescent tree.

The one-dimensional Wright-Fisher diffusion process is important in a characterization of a wider class of continuous time reversible Markov processes with Beta stationary distributions originally studied by Bochner (1954) and Gasper (1972). These processes include the subordinated Wright-Fisher diffusion process.

Thu, 05 Feb 2009
13:00
DH 3rd floor SR

Decision Making and Risky Choice in animals: a biological perspective.

Alex Kacelnik
Abstract

Virtually all decisions taken by living beings, from financial investments to life history, mate choice or anti-predator responses involve uncertainties and inter-temporal trade offs. Thus, hypothesis and formal models from these different fields often have heuristic value across disciplines. I will present theories and experiments about temporal discounting and risky choice originating in behavioural research on birds. Among other topics, I will address empirical observations showing risk aversion for gains and risk proneness for losses, exploring parallels and differences between Prospect Theory, Risk Sensitivity Theory and Scalar Utility Theory.

Fri, 30 Jan 2009
14:30
DH 3rd floor SR

Carbon sequestration

Prof. Andy Woods
(B.P. Institute for Multiphase Flow)
Fri, 06 Mar 2009
14:15
DH 3rd floor SR

Martingale optimality, BSDE and cross hedging of insurance derivatives

Peter Imkeller
(Humboldt)
Abstract

A financial market model is considered on which agents (e.g. insurers) are subject to an exogenous financial risk, which they trade by issuing a risk bond. Typical risk sources are climate or weather. Buyers of the bond are able to invest in a market asset correlated with the exogenous risk. We investigate their utility maximization problem, and calculate bond prices using utility indi®erence. This hedging concept is interpreted by means of martingale optimality, and solved with BSDE and Malliavin's calculus tools. Prices are seen to decrease as a result of dynamic hedging. The price increments are interpreted in terms of diversification pressure.

Fri, 06 Feb 2009
14:15
DH 3rd floor SR

Financial markets and mathematics, changes and challenges

Marek Musiela
(BNP Paribas)
Abstract

Since summer 2007 financial markets moved in unprecedented ways. Volatility was extremely high. Correlations across the board increased dramatically. More importantly, also much deeper fundamental changes took place. In this talk we will concentrate on the following two aspects, namely, inter-bank unsecured lending at LIBOR and 40% recovery.

Before the crisis it was very realistic for the banks to consider that risk free rate of inter-bank lending, and hence also of funding, is equivalent to 3M LIBOR. This logic was extended to terms which are multiples of 3M via compounding and to arbitrary periods by interpolation and extrapolation. Driven by advances in financial mathematics arbitrage free term structure models have been developed for pricing of interest rate exotics, like LIBOR Market Model (or BGM). We explain how this methodology was challenged in the current market environment. We also point to mathematical questions that need to be addressed in order to incorporate in the pre-crisis pricing and risk management methodology the current market reality.

We also discuss historically validated and universally accepted pre-crisis assumption of 40% recovery. We expose its inconsistency with the prices observed now in the structured credit markets. We propose ways of addressing the problem and point to mathematical questions that need to be resolved.

Subscribe to DH 3rd floor SR