Fri, 11 May 2012

09:30 - 11:00
DH 3rd floor SR

OCIAM meeting

chair: Jon Chapman
Fri, 27 Apr 2012

10:00 - 11:22
DH 3rd floor SR
Fri, 20 Apr 2012

10:00 - 11:30
DH 3rd floor SR

CANCELLED

Harry Walton
(Sharp Labs)
Abstract

Sorry, this has been cancelled at short notice!

Fri, 18 May 2012

14:30 - 15:30
DH 3rd floor SR

Inverse methods in glaciology

Dr. Hilmar Gudmundsson
(British Antarctic Survey, Cambridge)
Abstract

Inverse methods are frequently used in geosciences to estimate model parameters from indirect measurements. A common inverse problem encountered when modelling the flow of large ice masses such as the Greenland and the Antarctic ice sheets is the determination of basal conditions from surface data. I will present an overview over some of the inverse methods currently used to tackle this problem and in particular discuss the use of Bayesian inverse methods in this context. Examples of the use of adjoint methods for large-scale optimisation problems that arise, for example, in flow modelling of West-Antarctica will be given.

Fri, 15 Jun 2012

14:30 - 15:30
DH 3rd floor SR

Modelling rate limitations in dissimilatory iron reduction

Dr Henry Winstanley
(University of Limerick)
Abstract

Respiration is a redox reaction in which oxidation of a substrate (often organic) is coupled to the reduction of a terminal electron acceptor (TEA) such as oxygen. Iron oxides in various mineral forms are abundant in sediments and sedimentary rocks, and many subsurface microbes have the ability to respire using Fe(III) as the TEA in anoxic conditions. This process is environmentally important in the degradation of organic substrates and in the redox-cycling of iron. But low mineral solubility limits the bioavailability of Fe(III), which microbes access primarily through reductive dissolution. For aqueous nutrients, expressions for microbial growth and nutrient uptake rates are standardly based on Monod kinetics. We address the question of what equivalent description is appropriate when solid phase Fe(III) is the electron acceptor.

Fri, 01 Jun 2012

14:30 - 15:30
DH 3rd floor SR

Global Optimization of Lipschitz Continuous Function with Applications to Reservoir Simulation

Dr Jari Fowkes
(University of Edinburgh)
Abstract

This talk will consist of two parts. In the first part we will present a motivating application from oil reservoir simulation, namely finding the location and trajectory of an oil producing well which maximises oil production. We will show how such a problem can be tackled through the use of radial basis function (RBF) approximation (also known as Kriging or Gaussian process regression) and a branch and bound global optimization algorithm.

In the second part of the talk we will show how one can improve the branch and bound algorithm through the use of Lipschitz continuity of the RBF approximation. This leads to an entirely new global optimization algorithm for twice differentiable functions with Lipschitz continuous Hessian. The algorithm makes use of recent cubic regularisation techniques from local optimization to obtain the necessary bounds within the branch and bound algorithm.

Fri, 04 May 2012

14:30 - 15:30
DH 3rd floor SR

Nonlinear data assimilation in highly nonlinear large-dimensional systems

Prof. Peter Jan van Leeuwen
(University of Reading)
Abstract

Data assimilation in highly nonlinear and high dimensional systems is a hard

problem. We do have efficient data-assimilation methods for high-dimensional

weakly nonlinear systems, exploited in e.g. numerical weather forecasting.

And we have good methods for low-dimensional (

Tue, 31 Jan 2012
11:00
DH 3rd floor SR

Application of the cubature on Wiener space to turbulence filtering

Dr Wonjung Lee
(OCCAM)
Abstract

In this talk we aim to filter the Majda-McLaughlin-Tabak(MMT) model, which is a one-dimensional prototypical turbulence system. Due to its inherent high dimensionality, we first try to find a low dimensional dynamical system whose statistical property is similar to the original complexity system. This dimensional reduction, called stochastic parametrization, is clearly well-known method but the value of current work lies in the derivation of an analytic closure for the parameters. We then discuss the necessity of the accurate filtering algorithm for this effective dynamics, and introduce the particle filter using the cubature on Wiener space and the recombination skill.

Subscribe to DH 3rd floor SR