15:45
Almost Sure and Moment Exponential Stability in the Numerical Simulation of Stochastic Differential Equations
Abstract
Relatively little is known about the ability of numerical methods for stochastic differential equations (SDE
Relatively little is known about the ability of numerical methods for stochastic differential equations (SDE
Self-interacting diffusions are solutions to SDEs with a drift term depending
on the process and its normalized occupation measure $\mu_t$ (via an interaction
potential and a confinement potential): $$\mathrm{d}X_t = \mathrm{d}B_t -\left(
\nabla V(X_t)+ \nabla W*{\mu_t}(X_t) \right) \mathrm{d}t ; \mathrm{d}\mu_t = (\delta_{X_t}
- \mu_t)\frac{\mathrm{d}t}{r+t}; X_0 = x,\,\ \mu_0=\mu$$ where $(\mu_t)$ is the
process defined by $$\mu_t := \frac{r\mu + \int_0^t \delta_{X_s}\mathrm{d}s}{r+t}.$$
We establish a relation between the asymptotic behaviour of $\mu_t$ and the
asymptotic behaviour of a deterministic dynamical flow (defined on the space of
the Borel probability measures). We will also give some sufficient conditions
for the convergence of $\mu_t$. Finally, we will illustrate our study with an
example in the case $d=2$.
A wide variety of problems arising in applications require the sampling of a
probability measure on the space of functions. Examples from econometrics,
signal processing, molecular dynamics and data assimilation will be given.
In this situation it is of interest to understand the computational
complexity of MCMC methods for sampling the desired probability measure. We
overview recent results of this type, highlighting the importance of measures
which are absolutely continuous with respect to a Guassian measure.
I will describe some applications of the main techniques of rough paths
theory to problems not related to SDE
Gradient bounds are a very powerful tool to study heat kernel measures and
regularisation properties for the heat kernel. In the elliptic case, it is easy
to derive them from bounds on the Ricci tensor of the generator. In recent
years, many efforts have been made to extend these bounds to some simple
examples in the hypoelliptic situation. The simplest case is the Heisenberg
group. In this talk, we shall discuss some recent developments (due to H.Q. Li)
on this question, and give some elementary proofs of these bounds.