Thu, 04 Feb 2010

12:30 - 13:30
Gibson 1st Floor SR

Transonic shocks in divergent nozzles

Myoungjean Bae
(Northwestern University, USA)
Abstract

One of important subjects in the study of transonic flow is to understand a global structure of flow through a convergent-divergent nozzle so called a de Laval nozzle. Depending on the pressure at the exit of the de Laval nozzle, various patterns of flow may occur. As an attempt to understand such a phenomenon, we introduce a new potential flow model called 'non-isentropic potential flow system' which allows a jump of the entropy across a shock, and use this model to rigorously prove the unique existence and the stability of transonic shocks for a fixed exit pressure. This is joint work with Mikhail Feldman.

Mon, 08 Mar 2010

17:00 - 18:00
Gibson 1st Floor SR

Global regular solutions to the Navier-Stokes equations in a cylinder with slip boundary conditions

Wojciech ZAJACZKOWSKI
(Polish Academy of Sciences)
Abstract

We consider the motion of a viscous incompressible fluid described by

the Navier-Stokes equations in a bounded cylinder with slip boundary

conditions. Assuming that $L_2$ norms of the derivative of the initial

velocity and the external force with respect to the variable along the

axis of the cylinder are sufficiently small we are able to prove long

time existence of regular solutions. By the regular solutions we mean

that velocity belongs to $W^{2,1}_2 (Dx(0,T))$ and gradient of pressure

to $L_2(Dx(0,T))$. To show global existence we prolong the local solution

with sufficiently large T step by step in time up to infinity. For this purpose

we need that $L_2(D)$ norms of the external force and derivative

of the external force in the direction along the axis of the cylinder

vanish with time exponentially.

Next we consider the inflow-outflow problem. We assume that the normal

component of velocity is nonvanishing on the parts of the boundary which

are perpendicular to the axis of the cylinder. We obtain the energy type

estimate by using the Hopf function. Next the existence of weak solutions is

proved.

Thu, 28 Jan 2010

12:30 - 13:30
Gibson 1st Floor SR

Statistical Theories of Liquid Crystals: Onsager, Maier-Saupe and Beyond

François Genoud
(OxPDE, University of Oxford)
Abstract
I will present in detail the celebrated theories of Onsager (1949) and Maier-Saupe (1958) explaining the phenomenon of long-range orientational order in nematic liquid crystals. The models are not rigorous from the mathematical viewpoint and my talk will stay at the formal level. If time permits, I will suggest directions towards a rigorous mean-field theory.
Mon, 01 Feb 2010

17:00 - 18:00
Gibson 1st Floor SR

Large homogeneous initial data for the 3D Navier-Stokes equations

Pierre-Gilles Lemarié-Rieusset
(Université d'Évry)
Abstract

Due to the scaling properties of the Navier-Stokes equations,

homogeneous initial data may lead to forward self-similar solutions.

When the initial data is small enough, it is well known that the

formalism of mild solutions (through the Picard-Duhamel formula) give

such self-similar solutions. We shall discuss the issue of large initial

data, where we can only prove the existence of weak solutions; those

solutions may lack self-similarity, due to the fact that we have no

results about uniqueness for such weak solutions. We study some tools

which may be useful to get a better understanding of those weak solutions.

Mon, 25 Jan 2010

17:00 - 18:00
Gibson 1st Floor SR

Properties of the $C^1$-smooth functions whose gradient range has topological dimension 1

Mikhail Korobkov
(Sobolev Institute of Mathematics)
Abstract

In the talk we discuss some results of [1]. We apply our previous methods [2] to geometry and to the mappings with bounded distortion.

\textbf{Theorem 1}.  Let $v:\Omega\to\mathbb{R}$ be a $C^1$-smooth function on a domain (open connected set) $\Omega\subset\mathbb{R}^2$. Suppose

$$ (1)\qquad \operatorname{Int} \nabla v(\Omega)=\emptyset. $$

Then $\operatorname{meas}\nabla v(\Omega)=0$.

Here $\operatorname{Int}E$ is the interior of ${E}$, $\operatorname{meas} E$ is the Lebesgue measure of ${E}$. Theorem 1 is a straight consequence of the following two results.

\textbf{ Theorem 2 [2]}.  Let $v:\Omega\to\mathbb{R}$ be a $C^1$-smooth function on a domain $\Omega\subset\mathbb{R}^2$. Suppose (1) is fulfilled. Then the graph of $v$ is a normal developing surface. 

Recall that a $C^1$-smooth manifold $S\subset\mathbb{R}^3$ is called  a normal developing surface [3] if for any $x_0\in S$ there exists a straight segment $I\subset S$ (the point $x_0$ is an interior point of $I$) such that the tangent plane to $S$ is stationary along $I$.

\textbf{Theorem 3}.  The spherical image of any $C^1$-smooth normal developing surface $S\subset\mathbb{R}^3$ has the area (the Lebesgue measure) zero.

Recall that the spherical image of a surface $S$ is the set $\{\mathbf{n}(x)\mid x\in S\}$, where $\mathbf{n}(x)$ is the unit normal vector to $S$ at the point~$x$. From Theorems 1--3 and the classical results of A.V. Pogorelov (see [4, Chapter 9]) we obtain the following corollaries Corollary 4. Let the spherical image of a $C^1$-smooth surface $S\subset\mathbb{R}^3$ have no interior points. Then this surface is a surface of zero extrinsic curvature in the sense of Pogorelov.

\textbf{ Corollary 5}. Any $C^1$-smooth normal developing surface $S\subset\mathbb{R}^3$ is a surface of zero extrinsic curvature in the sense of Pogorelov.

\textbf{Theorem 6}. Let $K\subset\mathbb{R}^{2\times 2}$ be a compact set and the topological dimension of $K$ equals 1. Suppose there exists $\lambda> 0$ such that $\forall A,B\in K, \, \, |A-B|^2\le\lambda\det(A-B).$

Then for any Lipschitz mapping $f:\Omega\to\mathbb R^2$ on a domain $\Omega\subset\mathbb R^2$ such that $\nabla f(x)\in K$ a.e. the identity $\nabla f\equiv\operatorname{const}$ holds.

Many partial cases of Theorem 6 (for instance, when $K=SO(2)$ or $K$ is a segment) are well-known (see, for example, [5]).

The author was supported by the Russian Foundation for Basic Research (project no. 08-01-00531-a).

 

[1] {Korobkov M.\,V.,} {``Properties of the $C^1$-smooth functions whose gradient range has topological dimension~1,'' Dokl. Math., to appear.}

[2] {Korobkov M.\,V.} {``Properties of the $C^1$-smooth functions with nowhere dense gradient range,'' Siberian Math. J., \textbf{48,} No.~6, 1019--1028 (2007).}

[3] { Shefel${}'$ S.\,Z.,} {``$C^1$-Smooth isometric imbeddings,'' Siberian Math. J., \textbf{15,} No.~6, 972--987 (1974).}

[4] {Pogorelov A.\,V.,} {Extrinsic geometry of convex surfaces, Translations of Mathematical Monographs. Vol. 35. Providence, R.I.: American Mathematical Society (AMS). VI (1973).}

[5] {M\"uller ~S.,} {Variational Models for Microstructure and Phase Transitions. Max-Planck-Institute for Mathematics in the Sciences. Leipzig (1998) (Lecture Notes, No.~2. http://www.mis.mpg.de/jump/publications.html).}

Mon, 18 Jan 2010

17:00 - 18:00
Gibson 1st Floor SR

Obstacle type problems : An overview and some recent results

Henrik Shahgholian
(KTH Stockholm)
Abstract

In this talk I will present recent developments of the obstacle type problems, with various applications ranging

from: Industry to Finance, local to nonlocal operators, and one to multi-phases.

The theory has evolved from a single equation

$$

\Delta u = \chi_{u > 0}, \qquad u \geq 0

$$

to embrace a more general (two-phase) form

$$

\Delta u = \lambda_+ \chi_{u>0} - \lambda_- \chi_{u0$.

The above problem changes drastically if one allows $\lambda_\pm$ to have the incorrect sign (that appears in composite membrane problem)!

In part of my talk I will focus on the simple {\it unstable} case

$$

\Delta u = - \chi_{u>0}

$$

and present very recent results (Andersson, Sh., Weiss) that classifies the set of singular points ($\{u=\nabla u =0\}$) for the above problem.

The techniques developed recently by our team also shows an unorthodox approach to such problems, as the classical technique fails.

At the end of my talk I will explain the technique in a heuristic way.

Thu, 10 Dec 2009

12:00 - 13:00
Gibson 1st Floor SR

OxMOS Team Meeting

Christoph Ortner; Cameron Hall
Subscribe to Gibson 1st Floor SR