Research group
Combinatorics
Tue, 25 Feb 2020
14:00
L6

Coordinate Deletion

Eero Räty
(Cambridge)
Abstract

For a family $A$ in $\{0,...,k\}^n$, its deletion shadow is the set obtained from $A$ by deleting from any of its vectors one coordinate. Given the size of $A$, how should we choose $A$ to minimise its deletion shadow? And what happens if instead we may delete only a coordinate that is zero? We discuss these problems, and give an exact solution to the second problem.

Tue, 10 Mar 2020
14:00
L6

Cycles of length three and four in tournaments

Jonathan Noel
(Warwick)
Abstract

Given a tournament with $d{n \choose 3}$ cycles of length three, how many cycles of length four must there be? Linial and Morgenstern (2016) conjectured that the minimum is asymptotically attained by "blowing up" a transitive tournament and orienting the edges randomly within the parts. This is reminiscent of the tight examples for the famous Triangle and Clique Density Theorems of Razborov, Nikiforov and Reiher. We prove the conjecture for $d \geq \frac{1}{36}$ using spectral methods. We also show that the family of tight examples is more complex than expected and fully characterise it for $d \geq \frac{1}{16}$. Joint work with Timothy Chan, Andrzej Grzesik and Daniel Král'.

Tue, 03 Mar 2020
14:00
L6

Planar graphs: One graph to rule them all

Marthe Bonamy
(Bordeaux)
Abstract

Consider all planar graphs on n vertices. What is the smallest graph that contains them all as induced subgraphs? We provide an explicit construction of such a graph on $n^{4/3+o(1)}$ vertices, which improves upon the previous best upper bound of $n^{2+o(1)}$, obtained in 2007 by Gavoille and Labourel.

In this talk, we will gently introduce the audience to the notion of so-called universal graphs (graphs containing all graphs of a given family as induced subgraphs), and devote some time to a key lemma in the proof. That lemma comes from a recent breakthrough by Dujmovic et al. regarding the structure of planar graphs, and has already many interesting consequences - we hope the audience will be able to derive more. This is based on joint work with Cyril Gavoille and Michal Pilipczuk.

Tue, 18 Feb 2020
14:00
L6

On the size of subsets of F_p^n without p distinct elements summing to zero

Lisa Sauermann
(Stanford)
Abstract

Let us fix a prime $p$. The Erdős-Ginzburg-Ziv problem asks for the minimum integer $s$ such that any collection of $s$ points in the lattice $\mathbb{Z}^n$ contains $p$ points whose centroid is also a lattice point in $\mathbb{Z}^n$. For large $n$, this is essentially equivalent to asking for the maximum size of a subset of $\mathbb{F}_p^n$ without $p$ distinct elements summing to zero.

In this talk, we discuss a new upper bound for this problem for any fixed prime $p\geq 5$ and large $n$. Our proof uses the so-called multi-colored sum-free theorem which is a consequence of the Croot-Lev-Pach polynomial method, as well as some new combinatorial ideas.

Tue, 04 Feb 2020
14:00
L6

An asymptotic version of the prime power conjecture

Sarah Peluse
(Oxford)
Abstract

A subset $D$ of a finite cyclic group $\mathbb{Z}/m\mathbb{Z}$ is called a "perfect difference set" if every nonzero element of $\mathbb{Z}/m\mathbb{Z}$ can be written uniquely as the difference of two elements of $D$. If such a set exists, then a simple counting argument shows that $m=n^2+n+1$ for some nonnegative integer $n$. Singer constructed examples of perfect difference sets in $\mathbb{Z}/(n^2+n+1)\mathbb{Z}$ whenever $n$ is a prime power, and it is an old conjecture that these are the only such $n$ for which $\mathbb{Z}/(n^2+n+1)\mathbb{Z}$ contains a perfect difference set. In this talk, I will discuss a proof of an asymptotic version of this conjecture.

Tue, 28 Jan 2020
14:00
L6

Edge-sampling and modularity

Fiona Skerman
(Bristol University)
Abstract

Modularity is a function on graphs which is used in algorithms for community detection. For a given graph G, each partition of the vertices has a modularity score, with higher values indicating that the partition better captures community structure in $G$. The (max) modularity $q^\ast(G)$ of the graph $G$ is defined to be the maximum over all vertex partitions of the modularity score, and satisfies $0 \leq q^\ast(G) \leq 1$.

We analyse when community structure of an underlying graph can be determined from an observed subset of the graph. In a natural model where we suppose edges in an underlying graph $G$ appear with some probability in our observed graph $G'$ we describe how high a sampling probability we need to infer the community structure of the underlying graph.

Joint work with Colin McDiarmid.

Tue, 21 Jan 2020
14:00
L6

Extremal problems of long cycles in random graphs

Gal Kronenberg
(University of Oxford)
Abstract

In this talk, we consider the random version of some classical extremal problems in the context of long cycles. This type of problems can also be seen as random analogues of the Turán number of long cycles, established by Woodall in 1972.

For a graph $G$ on $n$ vertices and a graph $H$, denote by $\text{ex}(G,H)$ the maximal number of edges in an $H$-free subgraph of $G$. We consider a random graph $G\sim G(n,p)$ where $p>C/n$, and determine the asymptotic value of $\text{ex}(G,C_t)$, for every $A\log(n)< t< (1- \varepsilon)n$. The behaviour of $\text{ex}(G,C_t)$ can depend substantially on the parity of $t$. In particular, our results match the classical result of Woodall, and demonstrate the transference principle in the context of long cycles.

Using similar techniques, we also prove a robustness-type result, showing the likely existence of cycles of prescribed lengths in a random subgraph of a graph with a nearly optimal density (a nearly ''Woodall graph"). If time permits, we will present some connections to size-Ramsey numbers of long cycles.

Based on joint works with Michael Krivelevich and Adva Mond.

Tue, 26 Nov 2019

14:00 - 15:00
L6

Partial Associativity in Latin Squares

Jason Long
(University of Oxford)
Further Information

Latin squares arise from the multiplication tables of groups, but the converse is not true in general. Given a Latin square A, we can define a group operation giving A as its multiplication table only when A satisfies a suitable associativity constraint. This observation leads to a natural question concerning the '1%' version: if A is only partially associative, can we still obtain something resembling a group structure? I will talk about some joint work with Tim Gowers on this question.

Tue, 19 Nov 2019

14:00 - 15:00
L6

Phase transitions in random regular graphs

Endre Csóka
Further Information

We analyze the asymptotic relative size of the largest independent set of a random d-regular graph on n → ∞ vertices. This problem is very different depending on d because of a surprising phase transition. This is somewhat similar to finding the density of ``water'' above and below its freezing point. These phase transitions are related to algorithmic thresholds, mixing properties, counting, graph reconstruction, graph limits and other questions. We are still far from a complete understanding of all these questions. Our tools are partially coming from statistical physics. 

Tue, 22 Oct 2019

14:00 - 15:00
L6

Homomorphisms from the torus

Matthew Jenssen
(Oxford)
Further Information

We present a detailed probabilistic and structural analysis of the set of weighted homomorphisms from the discrete torus Z_m^n, where m is even, to any fixed graph. Our main result establishes the "phase coexistence" phenomenon in a strong form: it shows that the corresponding probability distribution on such homomorphisms is close to a distribution defined constructively as a certain random perturbation of some "dominant phase". This has several consequences, including solutions (in a strong form) to conjectures of Engbers and Galvin and a conjecture of Kahn and Park. Special cases include sharp asymptotics for the number of independent sets and the number of proper q-colourings of Z_m^n (so in particular, the discrete hypercube). For the proof we develop a `Cluster Expansion Method', which we expect to have further applications, by combining machinery from statistical physics, entropy and graph containers. This is joint work with Peter Keevash.
 

 
Subscribe to Combinatorial Theory Seminar