Research group
Combinatorics
Tue, 24 Oct 2017
14:30
L6

Zero forcing in random and pseudorandom graphs

Nina Kamcev
(ETH Zurich)
Abstract

A subset S of initially infected vertices of a graph G is called forcing if we can infect the entire graph by iteratively applying the following process. At each step, any infected vertex which has a unique uninfected neighbour, infects this neighbour. The forcing number of G is the minimum cardinality of a forcing set in G. It was introduced independently as a bound for the minimum rank of a graph, and as a tool in quantum information theory.

The focus of this talk is on the forcing number of the random graph. Furthermore, we will state our bounds on the forcing number of pseudorandom graphs and related problems. The results are joint work with Thomas Kalinowski and Benny Sudakov.

Tue, 17 Oct 2017
14:30
L6

Intersecting Families of Permutations

Michelle Delcourt
(Birmingham University)
Abstract

Enumerating families of combinatorial objects with given properties and describing the typical structure of these objects are fundamental problems in extremal combinatorics. In this talk, we will investigate intersecting families of discrete structures in various settings, determining their typical structure as the size of the underlying ground set tends to infinity. Our new approach outlines a general framework for a number of similar problems; in particular, we prove analogous results for hypergraphs, permutations, and vector spaces using the same technique. This is joint work with József Balogh, Shagnik Das, Hong Liu, and Maryam Sharifzadeh.

Tue, 10 Oct 2017
14:30
L6

Random Triangles in Random Graphs

Oliver Riordan
(Oxford University)
Abstract

Given a graph $G$, we can form a hypergraph $H$ whose edges correspond to the triangles in $G$. If $G$ is the standard Erdős-Rényi random graph with independent edges, then $H$ is random, but its edges are not independent, because of overlapping triangles. This is (presumably!) a major complication when proving results about triangles in random graphs.  However, it turns out that, for many purposes, we can treat the triangles as independent, in a one-sided sense (and losing something in the density): we can find an independent random hypergraph within the set of triangles. I will present two proofs, one of which generalizes to larger complete (and some non-complete) subgraphs.

Tue, 13 Jun 2017
14:30
L6

On the number of distinct vertex sets covered by cycles

Jaehoon Kim
(Birmingham)
Abstract

Komlós conjectured in 1981 that among all graphs with minimum degree at least $d$, the complete graph $K_{d+1}$ minimises the number of Hamiltonian subsets, where a subset of vertices is Hamiltonian if it contains a spanning cycle. We prove this conjecture when $d$ is sufficiently large.  In fact we prove a stronger result: for large $d$, any graph $G$ with average degree at least $d$ contains almost twice as many Hamiltonian subsets as $K_{d+1}$, unless $G$ is isomorphic to $K_{d+1}$ or a certain other graph which we specify. This is joint work with Hong Liu, Maryam Sharifzadeh and Katherine Staden.

Tue, 30 May 2017
14:30
L6

Families with few k-chains

Adam Wagner
(Illinois at Urbana-Champaign)
Abstract

A central theorem in combinatorics is Sperner’s Theorem, which determines the maximum size of a family in the Boolean lattice that does not contain a 2-chain. Erdos later extended this result and determined the largest family not containing a k-chain. Erdos and Katona and later Kleitman asked how many such chains must appear in families whose size is larger than the corresponding extremal result.

This question was resolved for 2-chains by Kleitman in 1966, who showed that amongst families of size M in the Boolean lattice, the number of 2-chains is minimized by a family whose sets are taken as close to the middle layer as possible. He also conjectured that the same conclusion should hold for all k, not just 2. The best result on this question is due to Das, Gan and Sudakov who showed roughly that Kleitman’s conjecture holds for families whose size is at most the size of the k+1 middle layers of the Boolean lattice. Our main result is that for every fixed k and epsilon, if n is sufficiently large then Kleitman’s conjecture holds for families of size at most (1-epsilon)2^n, thereby establishing Kleitman’s conjecture asymptotically (in a sense). Our proof is based on ideas of Kleitman and Das, Gan and Sudakov.

Joint work with Jozsef Balogh.

Tue, 16 May 2017
14:30
L6

Some Extremal Results on Cycles in Hypergraphs

Tao Jiang
(Miami University)
Abstract

Many extremal results on cycles use what may be called BFS method, where a breath first search tree is used as a skeleton to build desired structures. A well-known example is the Bondy-Simonovits theorem that every n-vertex graph with more than 100kn^{1+1/k} edges contains an even cycle of length 2k. The standard BFS method, however, is not easily applicable for supersaturation problems where one wishes to show the existence of many copies of a given  subgraph. The method is also not easily applicable in the hypergraph setting.

In this talk, we focus on some variants of the standard BFS method. We use one of these in conjunction with some useful general reduction theorems that we develop to establish the supersaturation of loose (linear) even cycles in linear hypergraphs. This extends Simonovits' supersaturation theorem on even cycles in graphs. This is joint work with Liana Yepremyan.

If time allows, we will also discuss another variant (joint with Jie Ma) used in the study of Berge cycles of consecutive lengths in hypergraphs.

Tue, 06 Jun 2017
14:30
L6

Monochromatic Infinite Sumsets

Paul Russell
(Cambridge)
Abstract

It is well known that there is a finite colouring of the natural numbers such that there is no infinite set X with X+X (the pairwise sums from X, allowing repetition) monochromatic. It is easy to extend this to the rationals. Hindman, Leader and Strauss showed that there is also such a colouring of the reals, and asked if there exists a space 'large enough' that for every finite colouring there does exist an infinite X with X+X monochromatic. We show that there is indeed such a space. Joint work with Imre Leader.

Tue, 02 May 2017
14:30
L6

Bootstrap Percolation in the Hypercube

Natasha Morrison
(Oxford University)
Abstract

The $r$-neighbour bootstrap process on a graph $G$ starts with an initial set of "infected" vertices and, at each step of the process, a healthy vertex becomes infected if it has at least $r$ infected neighbours (once a vertex becomes infected, it remains infected forever). If every vertex of $G$ becomes infected during the process, then we say that the initial set percolates.

In this talk I will discuss the proof of a conjecture of Balogh and Bollobás: for fixed $r$ and $d\to\infty$, the minimum cardinality of a percolating set in the $d$-dimensional hypercube is $\frac{1+o(1)}{r}\binom{d}{r-1}$. One of the key ideas behind the proof exploits a connection between bootstrap percolation and weak saturation. This is joint work with Jonathan Noel.

Tue, 25 Apr 2017
14:30
L3

Reed's Conjecture and Strong Edge Coloring

Marthe Bonamy
(Bordeaux)
Abstract

The chromatic number of a graph is trivially bounded from above by the maximum degree plus one, and from below by the size of a largest clique. Reed proved in 1998 that compared to the trivial upper bound, we can always save a number of colors proportional to the gap between the maximum degree and the size of a largest clique. A key step in the proof deals with how to spare colors in a graph whose every vertex "sees few edges" in its neighborhood. We improve the existing approach, and discuss its applications to Reed's theorem and strong edge coloring.  This is joint work with Thomas Perrett (Technical University of Denmark) and Luke Postle (University of Waterloo).

Tue, 07 Mar 2017
14:30
L6

The Complexity of Perfect Matchings and Packings in Dense Hypergraphs

Andrew Treglown
(Birmingham University)
Abstract

Given two $k$-graphs $H$ and $F$, a perfect $F$-packing in $H$ is a collection of vertex-disjoint copies of $F$ in $H$ which together cover all the vertices in $H$. In the case when $F$ is a single edge, a perfect $F$-packing is simply a perfect matching. For a given fixed $F$, it is generally the case that the decision problem whether an $n$-vertex $k$-graph $H$ contains a perfect $F$-packing is NP-complete.

In this talk we describe a general tool which can be used to determine classes of (hyper)graphs for which the corresponding decision problem for perfect $F$-packings is polynomial time solvable. We then give applications of this tool. For example, we give a minimum $\ell$-degree condition for which it is polynomial time solvable to determine whether a $k$-graph satisfying this condition has a perfect matching (partially resolving a conjecture of Keevash, Knox and Mycroft). We also answer a question of Yuster concerning perfect $F$-packings in graphs.

This is joint work with Jie Han (Sao Paulo).
 

Subscribe to Combinatorial Theory Seminar