Research group
Combinatorics
Tue, 18 Oct 2011

16:00 - 17:00
L1

LMS Aitken Lecture: "Matroid Representation over Infinite Fields"

Professor Geoff Whittle
(Victoria University of Wellington)
Abstract

 

A canonical way to obtain a matroid is from a finite set of vectors in a vector space over a field F. A matroid that can be obtained in such a way is said to be representable over F. It is clear that when Whitney first defined matroids he had matroids representable over the reals as his standard model, but for a variety of reasons most attention has focussed on matroids representable over finite fields.
There is increasing evidence that the class of matroids representable over a fixed finite field is well behaved with strong general theorems holding. Essentially none of these theorems hold if F is infnite. Indeed matroids representable over the real-- the natural matroids for our geometric intuition -- turn out to be a mysterious class indeed. In the talk I will discuss this striking contrast in behaviour.

 

Tue, 18 Oct 2011

14:30 - 15:30
L3

LMS Aitken Lecture: "Well-quasi-ordering Binary Matroids"

Professor Geoff Whittle
(Victoria University of Wellington)
Abstract

The Graph Minors Project of Robertson and Seymour is one of the highlights of twentieth-century mathematics. In a long series of mostly difficult papers they prove theorems that give profound insight into the qualitative structure of members of proper minor-closed classes of graphs. This insight enables them to prove some remarkable banner theorems, one of which is that in any infinite set of graphs there is one that is a minor of the other; in other words, graphs are well-quasi-ordered under the minor order.
A canonical way to obtain a matroid is from a set of columns of a matrix over a field. If each column has at most two nonzero entries there is an obvious graph associated with the matroid; thus it is not hard to see that matroids generalise graphs. Robertson and Seymour always believed that their results were special cases of more general theorems for matroids obtained from matrices over nite elds. For over a decade, Jim Geelen, Bert Gerards and I have been working towards achieving this generalisation. In this talk I will discuss our success in achieving the generalisation for binary matroids, that is, for matroids that can be obtained from matrices over the 2-element field.
In this talk I will give a very general overview of my work with Geelen and Gerards. I will not assume familiarity with matroids nor will I assume familiarity with the results of the Graph Minors Project
Tue, 11 Oct 2011

14:30 - 15:30
L3

Induced graph removal

David Conlon
(Oxford)
Abstract

The induced graph removal lemma states that for any fixed graph $H$ on $h$ vertices and any $e\textgreater 0$ there exists $d\textgreater0$ such that any graph $G$ with at most $d n^h$ induced copies of $H$ may be made $H$-free by adding or removing atmost $e n^2$ edges. This fact was originally proven by Alon, Fischer, Krivelevich and Szegedy. In this talk, we discuss a new proof and itsrelation to various regularity lemmas. This is joint work with Jacob Fox.

Tue, 14 Jun 2011

14:30 - 15:30
L3

Ramsey Classes of Graphs and Beyond

Jaroslav Nesetril
(Prague)
Abstract

It is known that generic and universal structures and Ramsey classes are related. We explain this connection and complement it by some new examples. Particularly we disscuss universal and Ramsey classes defined by existence and non-existence of homomorphisms.

Tue, 07 Jun 2011

14:30 - 15:30
L3

Average-case performance of three-dimensional assignment heuristics

Gregory Sorkin
(LSE)
Abstract

The 2-dimensional assignment problem (minimum cost matching) is solvable in polynomial time, and it is known that a random instance of size n, with entries chosen independently and uniformly at random from [0,1], has expected cost tending to π^2/6.  In dimensions 3 and higher, the "planar" assignment problem is NP-complete, but what is the expected cost for a random instance, and how well can a heuristic do?  In d dimensions, the expected cost is of order at least n^{2-d} and at most ln n times larger, but the upper bound is non-constructive.  For 3 dimensions, we show a heuristic capable of producing a solution within a factor n^ε of the lower bound, for any constant ε, in time of order roughly n^{1/ε}.  In dimensions 4 and higher, the question is wide open: we don't know any reasonable average-case assignment heuristic.

Tue, 31 May 2011

14:30 - 15:30
L3

Component structure of the vacant set induced by a random walk on a random graph

Colin Cooper
(King's College London)
Abstract

We consider random walks on two classes of random graphs and explore the likely structure of the the set of unvisited vertices or vacant set. In both cases, the size of the vacant set $N(t)$ can be obtained explicitly as a function of $t$. Let $\Gamma(t)$ be the subgraph induced by the vacant set. We show that, for random graphs $G_{n,p}$ above the connectivity threshold, and for random regular graphs $G_r$, for constant $r\geq 3$, there is a phase transition in the sense of the well-known Erdos-Renyi phase transition. Thus for $t\leq (1-\epsilon)t^*$ we have a unique giant plus components of  size $O(\log n)$ and for $t\geq (1+\epsilon)t^*$ we have only components of  size $O(\log n)$.

In the case of $G_r$ we describe the likely degree sequence, size of the giant component and structure of the small ($O(\log n)$) size components.

Tue, 24 May 2011

14:30 - 15:30
L3

The degree distribution of random planar graphs

Angelika Steger
(ETH Zurich)
Abstract

A random planar graph $P_n$ is a graph drawn uniformly at random from the class of all (labelled) planar graphs on $n$ vertices. In this talk we show that with probability $1-o(1)$ the number of vertices of degree $k$ in $P_n$ is very close to a quantity $d_k n$ that we determine explicitly. Here $k=k(n) \le c \log n$. In the talk our main emphasis will be on the techniques for proving such results. (Joint work with Kosta Panagiotou.)

Tue, 10 May 2011

14:30 - 15:30
L3

Edge colouring multigraphs

Penny Haxell
(Waterloo)
Abstract

We highlight a technique for studying edge colourings of multigraphs, due to Tashkinov. This method is a sophisticated generalisation of the method of alternating paths, and builds upon earlier work by Kierstead and Goldberg. In particular we show how to apply it to a number of edge colouring problems, including the question of whether the class of multigraphs that attain equality in Vizing's classical bound can be characterised.

This talk represents joint work with Jessica McDonald.

Tue, 03 May 2011

14:30 - 15:30
L3

Hajos’ Conjecture is almost always true

Bruce Reed
(McGill)
Abstract

In 1961 Hajos conjectured that if a graph contains no subdivsion of a clique of order t then its chromatic number is less than t. In 1981, Erdos and Fajtlowicz showed that the conjecture is almost always false. We show it is almost always true. This is joint work with Keevash, Mohar, and McDiarmid.

Tue, 08 Mar 2011
14:30
L3

"Random matroids"

Dominic Welsh
(Oxford)
Abstract

I shall describe some recent results about the asymptotic behaviour of matroids.

Specifically almost all matroids are simple and have probability at least 1/2 of being connected.

Also, various quantitative results about rank, number of bases and number and size of circuits of almost all matroids are given. There are many open problems and I shall not assume any previous knowledge of matroids. This is joint work, see below.

1 D. Mayhew, M. Newman, D. Welsh and G. Whittle,

On the asymptotic properties of connected matroids, European J. Combin. to appear

2 J. Oxley, C. Semple, L. Wasrshauer and D. Welsh,

On properties of almost all matroids, (2011) submitted

Subscribe to Combinatorial Theory Seminar