Research group
Combinatorics
Wed, 24 May 2023

10:15 - 18:00
L3

One-Day Meeting in Combinatorics

Multiple
Abstract

The speakers are Maya Stein (University of Chile), Mathias Schacht (Hamburg), János Pach (Rényi Institute, Hungary and IST Austria), Marthe Bonamy (Bordeaux)Mehtaab Sawhney (Cambridge/MIT), and Julian Sahasrabudhe (Cambridge). Please see the event website for further details including titles, abstracts, and timings. Anyone interested is welcome to attend, and no registration is required.

Tue, 09 May 2023

14:00 - 15:00
L5

Colouring and domination in tournaments

Paul Seymour
(Princeton)
Abstract

"Colouring" a tournament means partitioning its vertex set into acylic subsets; and the "domination number" is the size of the smallest set of vertices with no common in-neighbour. In some ways these are like the corresponding concepts for graphs, but in some ways they are very different. We give a survey of some recent results and open questions on these topics.

Joint with Tung Nguyen and Alex Scott.

Tue, 25 Apr 2023

14:00 - 15:00
L5

Pancyclicity of highly-connected graphs

Shoham Letzter
(University College London)
Abstract

A classic result of Chvatál and Erdős (1972) asserts that, if the vertex-connectivity of a graph G is at least as large as its independence number, then G has a Hamilton cycle. We prove a similar result, implying that a graph G is pancyclic, namely it contains cycles of all lengths between 3 and |G|: we show that if |G| is large and the vertex-connectivity of G is larger than its independence number, then G is pancyclic. This confirms a conjecture of Jackson and Ordaz (1990) for large graphs.

Tue, 07 Mar 2023

15:30 - 16:30
Virtual

Correlated stochastic block models: graph matching and community recovery

Miklos Racz
(Northwestern University)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will discuss statistical inference problems on edge-correlated stochastic block models. We determine the information-theoretic threshold for exact recovery of the latent vertex correspondence between two correlated block models, a task known as graph matching. As an application, we show how one can exactly recover the latent communities using multiple correlated graphs in parameter regimes where it is information-theoretically impossible to do so using just a single graph. Furthermore, we obtain the precise threshold for exact community recovery using multiple correlated graphs, which captures the interplay between the community recovery and graph matching tasks. This is based on joint work with Julia Gaudio and Anirudh Sridhar.

Tue, 28 Feb 2023

14:00 - 15:00
L4

Some combinatorial applications of guided random processes

Peter Keevash
(Oxford University)
Abstract

Random greedy algorithms became ubiquitous in Combinatorics after Rödl's nibble (semi-random method), which was repeatedly refined for various applications, such as iterative graph colouring algorithms (Molloy-Reed) and lower bounds for the Ramsey number $R(3,t)$ via the triangle-free process (Bohman-Keevash / Fiz Pontiveros-Griffiths-Morris). More recently, when combined with absorption, they have played a key role in many existence and approximate counting results for combinatorial structures, following a paradigm established by my proofs of the Existence of Designs and Wilson's Conjecture on the number of Steiner Triple Systems. Here absorption (converting approximate solutions to exact solutions) is generally the most challenging task, which has spurred the development of many new ideas, including my Randomised Algebraic Construction method, the Kühn-Osthus Iterative Absorption method and Montgomery's Addition Structures (for attacking the Ryser-Brualdi-Stein Conjecture). The design and analysis of a suitable guiding mechanism for the random process can also come with major challenges, such as in the recent proof of Erdős' Conjecture on Steiner Triple Systems of high girth (Kwan-Sah-Sawhney-Simkin). This talk will survey some of this background and also mention some recent results on the Queens Problem (Bowtell-Keevash / Luria-Simkin / Simkin) and the Existence of Subspace Designs (Keevash-Sah-Sawhney). I may also mention recent solutions of the Talagrand / Kahn-Kalai Threshold Conjectures (Frankston-Kahn-Narayanan-Park / Park-Pham) and thresholds for Steiner Triple Systems / Latin Squares (Keevash / Jain-Pham), where the key to my proof is constructing a suitable spread measure via a guided random process.

Tue, 07 Mar 2023

14:00 - 15:00
Virtual

A loglog step towards the Erdős-Hajnal conjecture

Paul Seymour
(Princeton)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In 1977, Erdős and Hajnal made the conjecture that, for every graph $H$, there exists $c>0$ such that every $H$-free graph $G$ has a clique or stable set of size at least $|G|^c$; and they proved that this is true with $|G|^c$ replaced by $2^{c\sqrt{\log |G|}}$. Until now, there has been no improvement on this result (for general $H$). We recently proved a strengthening: that for every graph $H$, there exists $c>0$ such that every $H$-free graph $G$ with $|G|\ge 2$ has a clique or stable set of size at least $2^{c\sqrt{\log |G| \log\log|G|}}$. This talk will outline the proof. Joint work with Matija Bucić, Tung Nguyen and Alex Scott.

Tue, 07 Feb 2023

15:30 - 16:30
Virtual

Bounds for subsets of $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{n}$ without L-shaped configurations

Sarah Peluse
(Princeton/IAS)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will discuss the difficult problem of proving reasonable bounds in the multidimensional generalization of Szemerédi's theorem and describe a proof of such bounds for sets lacking nontrivial configurations of the form (x,y), (x,y+z), (x,y+2z), (x+z,y) in the finite field model setting.

Tue, 07 Feb 2023

14:00 - 15:00
Virtual

Recent progress on random graph matching problems

Jian Ding
(Peking University)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In this talk, I will review some recent progress on random graph matching problems, that is, to recover the vertex correspondence between a pair of correlated random graphs from the observation of two unlabelled graphs. In this talk, I will touch issues of information threshold, efficient algorithms as well as complexity theory. This is based on joint works with Hang Du, Shuyang Gong and Zhangsong Li.

Tue, 21 Feb 2023

14:00 - 15:00
L4

Hamilton decompositions of regular bipartite tournaments

Bertille Granet
(Heidelberg University)
Abstract

A regular bipartite tournament is an orientation of a complete balanced bipartite graph $K_{2n,2n}$ where every vertex has its in- and outdegree both equal to $n$. In 1981, Jackson conjectured that any regular bipartite tournament can be decomposed into Hamilton cycles. We prove this conjecture for sufficiently large $n$. Along the way, we also prove several further results, including a conjecture of Liebenau and Pehova on Hamilton decompositions of dense bipartite digraphs.

Subscribe to Combinatorial Theory Seminar