Research group
Geometry
Mon, 25 Apr 2022
14:15
L5

Ricci flows with nonstandard initial data

Peter Topping
(University of Warwick)
Abstract

Most Ricci flow theory takes the short-time existence of solutions as a starting point and ends up concerned with understanding the long-time limiting behaviour and the structure of any finite-time singularities that may develop along the way. In this talk I will look at what you can think of as singularities at time zero. I will describe some of the situations in which one would like to start a  Ricci flow with a space that is rougher than a smooth bounded curvature Riemannian manifold, and some of the situations in which one considers smooth initial data that is only achieved in a non-smooth way. A particularly interesting and useful case is the problem of starting a Ricci flow on a Riemann surface equipped with a measure. I will not be assuming expertise in Ricci flow theory. Parts of the talk are joint with either Hao Yin (USTC) or ManChun Lee (CUHK).

Mon, 23 May 2022
14:15
L5

Ancient solutions and translators in Lagrangian mean curvature flow

Felix Schulze
(University of Warwick)
Abstract

For almost calibrated Lagrangian mean curvature flow it is known that all singularities are of Type II. To understand the finer structure of the singularities forming, it is thus necessary to understand the structure of general ancient solutions arising as potential limit flows at such singularities. We will discuss recent progress showing that ancient solutions with a blow-down a pair of static planes meeting along a 1-dimensional line are translators. This is joint work with J. Lotay and G. Szekelyhidi.

Mon, 02 May 2022
14:15
L5

Hypersurfaces with prescribed-mean-curvature: existence and properties

Costante Bellettini
(University College London)
Abstract

Let $N$ be a compact Riemannian manifold of dimension 3 or higher, and $g$ a Lipschitz non-negative (or non-positive) function on $N$. In joint works with Neshan Wickramasekera we prove that there exists a closed hypersurface $M$ whose mean curvature attains the values prescribed by $g$. Except possibly for a small singular set (of codimension 7 or higher), the hypersurface $M$ is $C^2$ immersed and two-sided (it admits a global unit normal); the scalar mean curvature at $x$ is $g(x)$ with respect to a global choice of unit normal. More precisely, the immersion is a quasi-embedding, namely the only non-embedded points are caused by tangential self-intersections: around such a non-embedded point, the local structure is given by two disks, lying on one side of each other, and intersecting tangentially (as in the case of two spherical caps touching at a point). A special case of PMC (prescribed-mean-curvature) hypersurfaces is obtained when $g$ is a constant, in which the above result gives a CMC (constant-mean-curvature) hypersurface for any prescribed value of the mean curvature.

Mon, 16 May 2022
14:15
L5

Morava K-theory and Hamiltonian loops

Ivan Smith
(Cambridge)
Abstract

A loop of Hamiltonian diffeomorphisms of a symplectic manifold $X$ defines, by clutching, a symplectic fibration over the two-sphere with fibre $X$.  We prove that the integral cohomology of the total space splits additively, answering a question of McDuff, and extending the rational cohomology analogue proved by Lalonde-McDuff-Polterovich in the late 1990’s. The proof uses a virtual fundamental class of moduli spaces of sections of the fibration in Morava K-theory. This talk reports on joint work with Mohammed Abouzaid and Mark McLean.

Mon, 07 Mar 2022
14:15
L5

Brakke Regularity for the Allen--Cahn Flow

Huy The Nguyen
(Queen Mary University, London)
Abstract

In this talk we prove an analogue of the Brakke's $\epsilon$-regularity theorem for the parabolic Allen--Cahn equation. In particular, we show uniform $C^{2,\alpha}$ regularity for the transition layers converging to smooth mean curvature flows as $\epsilon\rightarrow 0$. A corresponding gap theorem for entire eternal solutions of the parabolic Allen--Cahn is also obtained. As an application of the regularity theorem, we give an affirmative answer to a question of Ilmanen that there is no cancellation in BV convergence in the mean convex setting.

Further Information

The talk will be both online (Teams) and in person (L5)

Mon, 28 Feb 2022
14:15
L5

Chow quotients and geometric invariant theoretic quotients for group actions on complex projective varieties

Frances Kirwan
(University of Oxford)
Abstract

When a reductive group G acts on a complex projective variety
X, there exist different methods for finding an open G-invariant subset
of X with a geometric quotient (the 'stable locus'), which is a
quasi-projective variety and has a projective completion X//G. Mumford's
geometric invariant theory (GIT) developed in the 1960s provides one way
to do this, given a lift of the action to an ample line bundle on X,
though with no guarantee that the stable locus is not empty. An
alternative approach due to Kapranov and others in the 1990s is to use
Chow varieties to define a 'Chow quotient' X//G. The aim of this talk is
to review the relationship between these constructions for reductive
groups, and to discuss the situation when G is not reductive.

Further Information

The talk will be both online (Teams) and in person (L5)

Mon, 14 Feb 2022
14:15
L5

Quiver varieties and moduli spaces attached to Kleinian singularities

Søren Gammelgaard
(University of Oxford)
Abstract

Let $\Gamma$ be a finite subgroup of $SL(2, \mathbb{C})$. We can attach several different moduli spaces to the action of $\Gamma$ on $\mathbb{C}^2$, and we show how Nakajima's quiver varieties provide constructions of them. The definition of such a quiver variety depends on a stability parameter, and we are especially interested in what happens when this parameter moves into a specific ray in its associated wall-and-chamber structure. Some of the resulting quiver varieties can be understood as moduli spaces of certain framed sheaves on an appropriate stacky compactification of the Kleinian singularity $\mathbb{C}^2/\Gamma$. As a special case, this includes the punctual Hilbert schemes of $\mathbb{C}^2/\Gamma$.

Much of this is joint work with A. Craw, Á. Gyenge, and B. Szendrői.

Further Information

The talk will be both online (Teams) and in person (L5)

Mon, 24 Jan 2022
14:15
Virtual

Cayley fibrations in the Bryant-Salamon manifolds

Federico Trinca
(University of Oxford)
Abstract

In 1989, Bryant and Salamon constructed the first Riemannian manifolds with holonomy group $\Spin(7)$. Since a crucial aspect in the study of manifolds with exceptional holonomy regards fibrations through calibrated submanifolds, it is natural to consider such objects on the Bryant-Salamon manifolds.

In this talk, I will describe the construction and the geometry of (possibly singular) Cayley fibrations on each Bryant-Salamon manifold. These will arise from a natural family of structure-preserving $\SU(2)$ actions. The fibres will provide new examples of Cayley submanifolds.

Mon, 07 Feb 2022
14:15
L5

Nonabelian Hodge theory and the decomposition theorem for 2-CY categories

Ben Davison
(Edinburgh)
Abstract

Examples of 2CY categories include the category of coherent sheaves on a K3 surface, the category of Higgs bundles, and the category of modules over preprojective algebras or fundamental group algebras of compact Riemann surfaces.  Let p:M->N be the morphism from the stack of semistable objects in a 2CY category to the coarse moduli space.  I'll explain, using cohomological DT theory, formality in 2CY categories, and structure theorems for good moduli stacks, how to prove a version of the BBDG decomposition theorem for the exceptional direct image of the constant sheaf along p, even though none of the usual conditions for the decomposition theorem apply: p isn't projective or representable, M isn't smooth, the constant mixed Hodge module complex Q_M isn't pure...  As an application, I'll explain how this allows us to extend nonabelian Hodge theory to Betti/Dolbeault stacks.

Further Information

The talk will be both online (Teams) and in person (L5)

Mon, 06 Jun 2022
14:15
L5

Symplectic cohomology of compound Du Val singularities

Jonny Evans
(University of Lancaster)
Abstract

(Joint with Y. Lekili) If someone gives you a variety with a singular point, you can try and get some understanding of what the singularity looks like by taking its “link”, that is you take the boundary of a neighbourhood of the singular point. For example, the link of the complex plane curve with a cusp $y^2 = x^3$ is a trefoil knot in the 3-sphere. I want to talk about the links of a class of 3-fold singularities which come up in Mori theory: the compound Du Val (cDV) singularities. These links are 5-dimensional manifolds. It turns out that many cDV singularities have the same 5-manifold as their link, and to tell them apart you need to keep track of some extra structure (a contact structure). We use symplectic cohomology to distinguish the contact structures on many of these links.

Subscribe to Geometry and Analysis Seminar