Research group
Geometry
Mon, 25 Nov 2013
14:00
L5

Diffeomorphism Invariant Gauge Theories

Kirill Krasnov
(Nottingham)
Abstract

I will define and describe in some details a large class of gauge theories in four dimensions. These theories admit a variational principle with the action a functional of only the gauge field. In particular, no metric appears in the Lagrangian or is used in the construction of the theory. The Euler-Lagrange equations are second order PDE's on the gauge field. When the gauge group is taken to be SO(3), a particular theory from this class can be seen to be (classically) equivalent to Einstein's General Relativity. All other points in the SO(3) theory space can be seen to describe "deformations" of General Relativity. These keep many of GR's properties intact, and may be important for quantum gravity. For larger gauge groups containing SO(3) as a subgroup, these theories can be seen to describe gravity plus Yang-Mills gauge fields, even though the associated geometry is much less understood in this case.

Mon, 02 Dec 2013
14:00
L5

Floer cohomology and Platonic solids

Yanki Lekili
(KCL)
Abstract

We consider Fano threefolds on which SL(2,C) acts with a dense

open orbit. This is a finite list of threefolds whose classification

follows from the classical work of Mukai-Umemura and Nakano. Inside

these threefolds, there sits a Lagrangian space form given as an orbit

of SU(2). We prove this Lagrangian is non-displaceable by Hamiltonian

isotopies via computing its Floer cohomology over a field of non-zero

characteristic. The computation depends on certain counts of holomorphic

disks with boundary on the Lagrangian, which we explicitly identify.

This is joint work in progress with Jonny Evans.

Mon, 04 Nov 2013
14:00
L5

4D Einstein equations as a gauge theory

Joel Fine
(UL Brussels)
Abstract

I will explain a new formulation of Einstein’s equations in 4-dimensions using the language of gauge theory. This was also discovered independently, and with advances, by Kirill Krasnov. I will discuss the advantages and disadvantages of this new point of view over the traditional "Einstein-Hilbert" description of Einstein manifolds. In particular, it leads to natural "sphere conjectures" and also suggests ways to find new Einstein 4-manifolds. I will describe some first steps in these directions. Time permitting, I will explain how this set-up can also be seen via 6-dimensional symplectic topology and the additional benefits that brings.

Mon, 27 May 2013
14:15
L3

The Pressure metric for convex Anosov representations

Martin Bridgeman
(Boston College)
Abstract

 Using thermodynamic formalism we introduce a notion of intersection for convex Anosov representations. We produce an Out-invariant Riemannian metric on the smooth points of the deformation  space of convex, irreducible representations of a word hyperbolic group G into SL(m,R) whose Zariski closure contains a generic element. In particular, we produce a mapping class group invariant Riemannian metric on Hitchin components which restricts to the Weil-Petersson metric on the Fuchsian locus. 
This is joint work with R. Canary, F. Labourie and A. Sambarino.
Mon, 10 Jun 2013
14:15
L3

tba

tba
Subscribe to Geometry and Analysis Seminar