Research group
Geometry
Mon, 21 Nov 2011
14:15
L3

Khovanov-Rozansky homology, Hilbert scheme of points on singular curve and DAHAs.

Alexei Oblomkov
(Amherst)
Abstract

By intersecting a small three-dimensional sphere which surrounds a singular point of a planar curve, with the curve, one obtains a link in three-dimensional space. In my talk I explain a conjectural formula for the  ranks Khovanov-Rozansky homology of the link which interpretsthe ranks in terms of topology of some natural stratification on the moduli space of torsion free sheaves on the curve. In particular I will present  a formula for the ranks of the Khovanov-Rozansky homology of the torus knots which generalizes Jones formula for HOMFLY invariants of the torus knots.  The later formula relates Khovanov-Rozansky homology to the represenation theory of Double Affine Hecke Algebras. The talk presents joint work with Gorsky, Shende and  Rasmussen.

Mon, 07 Nov 2011

14:15 - 15:15
L3

Autoduality of Jacobians for singular curves

Dmytro Arinkin
(University of North Carolina & IAS Princeton)
Abstract

Let C be a (smooth projective algebraic) curve. It is well known that the Jacobian J of C is a principally polarized abelian variety. In otherwords, J is self-dual in the sense that J is identified with the space of topologically trivial line bundles on itself.

Suppose now that C is singular. The Jacobian J of C parametrizes topologically trivial line bundles on C; it is an algebraic group which is no longer compact. By considering torsion-free sheaves instead of line bundles, one obtains a natural singular compactification J' of J.

In this talk, I consider (projective) curves C with planar singularities. The main result is that J' is self-dual: J' is identified with a space of torsion-free sheaves on itself. This autoduality naturally fits into the framework of the geometric Langlands conjecture; I hope to sketch this relation in my talk.

Mon, 28 Nov 2011

14:15 - 15:15
L3

Fission varieties

Philip Boalch
(ENS Paris)
Abstract

I'll recall the quasi-Hamiltonian approach to moduli spaces of flat connections on Riemann surfaces, as a nice finite dimensional algebraic version of operations with loop groups such as fusion. Recently, whilst extending this approach to meromorphic connections, a new operation arose, which we will call "fission". As will be explained, this operation enables the construction of many new algebraic symplectic manifolds, going beyond those we were trying to construct.

Mon, 10 Oct 2011
14:15
L3

Hilbert schemes, Torus Knots, and Khovanov Homology

Jacob Rasmussen
(Cambridge)
Abstract

Khovanov homology is an invariant of knots in S^3 which categorifies the Jones polynomial. Let C be a singular plane curve. I'll describe some conjectures relating the geometry of the Hilbert scheme of points on C to a variant of Khovanov homology which categorifies the HOMFLY-PT polynomial. These conjectures suggest a relation between HOMFLY-PT homology of torus knots and the representation theory of the rational Cherednik algebra. As a consequence, we get some easily testable predictions about the Khovanov homology of torus knots.

Mon, 20 Jun 2011
14:15
L3

Periods of Cubic Surfaces

Domingo Toledo
(Utah)
Abstract

The moduli space of cubic surfaces is known to be isomorphic to a quotient of the unit ball in C^4 by an arithmetic

group. We review this construction, then explain how to construct

an explicit inverse to the period map by using suitable theta functions. This gives a new proof of the isomorphism between the two spaces.

Subscribe to Geometry and Analysis Seminar