Tue, 20 Feb 2018

16:00 - 17:00
L1

Linear orders in NIP theories

Pierre Simon
(Berkeley)
Abstract

A longstanding open question asks whether every unstable NIP theory interprets an infinite linear order. I will present a construction that almost provides a positive answer. I will also discuss some conjectural applications to the classification of omega-categorical NIP structure, generalizing what is known for omega-stable, and classification of models mimicking the superstable case.
 

Mon, 11 Jun 2018

16:00 - 17:00
L1

Pattern formations by large interaction forces in a nonlinear elliptic system

Jaeyoung Byeon
(Korea Advanced Institute of Science and Technology)
Abstract

For a nonlinear elliptic system coming from a nonlinear Schroedinger system, the interaction between components is represented by a symmetric matrix. The construction of possibly lower energy nontrivial solutions and the complete description of dependence of the solutions on the matrix are quite challenging tasks. Especially, we are interested in the case that intra-species interaction forces are fixed and inter-species forces are very large, that is, the diagonal part of the symmetric matric is fixed and the non-diagonal entries are very large. In this case, depending on the network between components by repulsive or attractive forces, several different types of patterns may appear. I would like to explain our recent studies on the problem with three components and touch a possible exploration on the general n-components problem.

Fri, 09 Mar 2018

16:00 - 17:00
L1

North meets South Colloquium

Radu Cimpeanu and Liana Yepremyan
Abstract

Speaker: Radu Cimpeanu
Title: Crash testing mathematical models in fluid dynamics

Abstract: In the past decades, the broad area of multi-fluid flows (systems in which at least two fluids, be they liquids or mixtures of liquid and gas, co-exist) has benefited from simultaneous innovations in experimental equipment, concentrated efforts on analytical approaches, as well as the rise of high performance computing tools. This provides a wonderful wealth of techniques to approach a given challenge, however it also introduces questions as to which path(s) to take. In this talk I will explore the symbiotic relationship between reduced order modelling and fully nonlinear direct computations, each of their strengths and weaknesses and ultimately how to use a hybrid strategy in order to gain an understanding over larger subsets of often vast solution spaces. The discussion will take us through a number of interesting topics in fluid mechanics on a wide range of scales, from electrohydrodynamic control in microfluidics, to nonlinear waves in channel flows and violent drop impact scenarios.

Speaker: Liana Yepremyan
Title: Turan-type problems for hypergraphs

Abstract: One of the earliest results in extremal graph theory is Mantel's Theorem  from 1907, which says that for given number of vertices, the largest triangle-free graph on these vertices is the complete bipartite graph with (almost) equal sizes. Turan's Theorem from 1941 generalizes this result to all complete graphs. In general, the Tur'\an number of a graph G (or more generally, of  a hypergraph) is the largest number of edges in a graph (hypergraph) on given number of vertices containing no copy of G as a subgraph. For graphs a lot is known about these numbers,  a result by Erd\Hos, Stone and Simonovits determines the correct order of magnitude of Tur\'an numbers  for all non-bipartite graphs. However, these numbers are known only for few  hypergraphs. We don't even know what is the Tur\'an number of the complete 3-uniform hypergraph on 4 vertices. In this talk I will give some  introduction  to these problems and brielfly describe some of the methods used, such as the stability method and the Lagrangian  function, which are interesting on their own.
 

Fri, 23 Feb 2018

16:00 - 17:00
L1

Self-awareness, assertiveness and productive relationships

Dave Hewett and Alison Trinder
Abstract

Who are you? What motivates you? What's important to you? How do you react to challenges and adversities? In this session we will explore the power of self-awareness (understanding our own characters, values and motivations) and introduce assertiveness skills in the context of building positive and productive relationships with colleagues, collaborators, students and others.
 

Fri, 09 Feb 2018

16:00 - 17:00
L1

North meets South Colloquium

Yalong Cao and Doireann O'Kiely
Abstract

Yaolong Cao: Gauge Theories on Geometric Spaces
In this talk, I will very briefly discuss gauge theories on various geometric spaces, including Riemann surfaces, 4-manifolds and manifolds with special or exceptional holonomy. More details on Calabi-Yau 4-folds will be mentioned, which are related to my research interests.

Doireann O'Kiely: Dynamic Wrinkling of Elastic Sheets
Our lives contain many scenarios in which thin structures wrinkle: a piece of tin foil or cling film crumples in our hand, and creases form in our skin as we age. In this talk I will discuss experimental and theoretical work by researchers in the Mathematical Institute on wrinkling of elastic sheets.
We study the impact of a solid onto an elastic sheet floating at a liquid-air interface. We observe a wave that is reminiscent of the ripples caused by dropping a stone in a pond, as well as spoke-like wrinkles, whose wavelength evolves in time. We describe these phenomena using a combination of asymptotic analysis, numerical simulations and scaling arguments.
 

Fri, 02 Feb 2018

16:00 - 17:00
L1

What ECRs need to know about REF2021

Mike Giles
Abstract

In this talk I will discuss the upcoming REF2021 and its significance for early career researchers (research fellows and postdocs) including

  • why it is so important to all UK maths departments
  • why the timing of it could have important career consequences for ECRs
  • publication issues such as quality versus quantity, and choice of journal
  • the importance of Impact Case Studies
     
Fri, 26 Jan 2018

16:00 - 17:00
L1

Panel Discussion - Careers outside Academia

Abstract

A panel discussion and Q&A, looking at some of the challenges and opportunities available for mathematicians outside universities. Featuring:

Madeleine Copin – North London Collegiate School
Josephine French – Health Data Insight, working in partnership with Public Health England
Martin Gould – Spotify
Dan Jones – Quadrature Capital
Adam Sardar – e-therapeutics

Fri, 19 Jan 2018

16:00 - 17:00
L1

Owning a successful DPhil

Dan Ciubotaru, Philip Maini, Thomas Wasserman, Renee Hoekzema, Jaroslav Fowkes, Carolina Matte Gregory
Abstract

Wondering about how to organise your DPhil? How to make the most of your supervision meetings?

In this session we will explore these and other questions related to what makes a successful DPhil with help from faculty members, postdocs and DPhil students.

  • In the first half of the session Dan Ciubotaru and Philip Maini will give short talks on their experiences as PhD students and supervisors.
  • The second part of the session will be a panel discussion with final-year Dphil students and early postdocs.

The panel will consist of Thomas Wasserman, Renee Hoekzema, Jaroslav Fowkes and Carolina Matte Gregory. Senior faculty members will be kindly asked to leave the lecture theatre to ensure that students feel comfortable discussing their experiences with other students and postdocs without any senior faculty present.

Tue, 26 Jun 2018

18:00 - 19:00
L1

Richard James - Atomistically inspired origami

Richard James
(University of Minnesota)
Abstract

The World population is growing at about 80 million per year.  As time goes by, there is necessarily less space per person. Perhaps this is why the scientific community seems to be obsessed with folding things.  In this lecture Dick James presents a mathematical approach to “rigid folding” inspired by the way atomistic structures form naturally - their features at a molecular level imply desirable features for macroscopic structures as well, especially 4D structures.  Origami structures even suggest an unusual way to look at the Periodic Table.

Richard D. James is Distinguished McKnight University Professor at the University of Minnesota.

Please email @email to register.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Mon, 15 Jan 2018

13:00 - 17:00
L1

Abel in Oxford - Lectures by Abel Prize winners and members of the Abel Prize Committee

Andrew Wiles, Irene Fonseca, John Rognes
(University of Oxford)
Abstract

Timetable:

1.00pm: Introductory Remarks by Camilla Serck-Hanssen, the Vice President of the Norwegian Academy of Science and Letters

1.10pm - 2.10pm: Andrew Wiles

2.10pm - 2.30pm: Break

2.30pm - 3.30pm: Irene Fonseca

3.30pm - 4.00pm: Tea and Coffee

4.00pm - 5.00pm: John Rognes

Abstracts:

Andrew Wiles: Points on elliptic curves, problems and progress

This will be a survey of the problems concerned with counting points on elliptic curves.

-------

Irene Fonseca: Mathematical Analysis of Novel Advanced Materials

Quantum dots are man-made nanocrystals of semiconducting materials. Their formation and assembly patterns play a central role in nanotechnology, and in particular in the optoelectronic properties of semiconductors. Changing the dots' size and shape gives rise to many applications that permeate our daily lives, such as the new Samsung QLED TV monitor that uses quantum dots to turn "light into perfect color"! 

Quantum dots are obtained via the deposition of a crystalline overlayer (epitaxial film) on a crystalline substrate. When the thickness of the film reaches a critical value, the profile of the film becomes corrugated and islands (quantum dots) form. As the creation of quantum dots evolves with time, materials defects appear. Their modeling is of great interest in materials science since material properties, including rigidity and conductivity, can be strongly influenced by the presence of defects such as dislocations. 

In this talk we will use methods from the calculus of variations and partial differential equations to model and mathematically analyze the onset of quantum dots, the regularity and evolution of their shapes, and the nucleation and motion of dislocations.

-------

John Rognes: Symmetries of Manifolds

To describe the possible rotations of a ball of ice, three real numbers suffice.  If the ice melts, infinitely many numbers are needed to describe the possible motions of the resulting ball of water.  We discuss the shape of the resulting spaces of continuous, piecewise-linear or differentiable symmetries of spheres, balls and higher-dimensional manifolds.  In the high-dimensional cases the answer turns out to involve surgery theory and algebraic K-theory.

Subscribe to L1