Tue, 30 Nov 2010

17:00 - 18:00
L2

Geometry and dynamics of some word maps on SL(2, Fq)

Tatiana Bandman
(Bar-Ilan)
Abstract

I will speak about a geometric method, based on the classical trace map, for investigating word maps on groups PSL(2, q) and SL(2, q). In two different papers (with F. Grunewald, B. Kunyavskii, and Sh. Garion, F. Grunewald, respectively) this approach was applied to the following problems.

1. Description of Engel-like sequences of words in two variables which characterize finite

solvable groups. The original problem was reformulated in the language of verbal dynamical

systems on SL(2). This allowed us to explain the mechanism of the proofs for known

sequences and to obtain a method for producing more sequences of the same nature.

2. Investigation of the surjectivity of the word map defined by the n-th Engel word

[[[X, Y ], Y ], . . . , Y ] on the groups PSL(2, q) and SL(2, q). Proven was that for SL(2, q), this

map is surjective onto the subset SL(2, q) $\setminus$ {−id} $\subset$ SL(2, q) provided that q $\ge q_0(n)$ is

sufficiently large. If $n\le 4$ then the map was proven to be surjective for all PSL(2, q).

Tue, 19 Oct 2010

17:00 - 18:00
L2

Homological finiteness Bredon properties for groups

Desi Kochloukova
(UNICAMP)
Abstract

We discuss homological finiteness Bredon types FPm with respect to the class of finite subgroups and seperately with respect to the class of virtually cyclic subgroups. We will concentrate to the case of solubles groups and if the time allows to the case of generalized R. Thompson groups of type F. The results announced are joint work with Brita Nucinkis

(Southampton) and Conchita Martinez Perez (Zaragoza) and will appear in papers in Bulletin of LMS and Israel Journal of Mathematics.

Thu, 14 Oct 2010

16:30 - 17:30
L2

Thin Shear Layers - the Key to Turbulence Structure

Julian Hunt
Abstract

The new model is that the universal small scale structure of high Reynolds number turbulence is determined by the dynamics of thin evolving shear layers, with thickness of the order of the Taylor micro scale,within which there are the familiar elongated vortices .Local quasi-linear dynamics shows how the shear layers act as barriers to external eddies and a filter for the transfer of energy to their interiors. The model is consistent with direct numerical simulations by Ishihara and Kaneda analysed in terms of conditional statistics relative to the layers and also with recent 4D measurements of lab turbulence by Wirth and Nickels. The model explains how the transport of energy into the layers leads to the observed inertial range spectrum and to the generation of intense structures, on the scale of the Kolmogorov micro-scale.

But the modelling also explains the important discrepancies between data and the Kolmogorov-Richardson cascade concept ,eg larger amplitudes of the smallest scale motions and of the higher moments ,and why the latter are generally less isotropic than lower order moments, eg in thermal convection. Ref JCRHunt , I Eames, P Davidson,J.Westerweel, J Fernando, S Voropayev, M Braza J Hyd Env Res 2010

Tue, 01 Jun 2010

17:00 - 18:00
L2

The cluster category of Dynkin type $A_\infty$

Peter Jorgensen
(Newcastle)
Abstract

\ \ The cluster category of Dynkin type $A_\infty$ is a ubiquitous object with interesting properties, some of which will be explained in this talk.

\\

\ \ Let us denote the category by $\mathcal{D}$. Then $\mathcal{D}$ is a 2-Calabi-Yau triangulated category which can be defined in a standard way as an orbit category, but it is also the compact derived category $D^c(C^{∗}(S^2;k))$ of the singular cochain algebra $C^*(S^2;k)$ of the 2-sphere $S^{2}$. There is also a “universal” definition: $\mathcal{D}$ is the algebraic triangulated category generated by a 2-spherical object. It was proved by Keller, Yang, and Zhou that there is a unique such category.

\\

\ \ Just like cluster categories of finite quivers, $\mathcal{D}$ has many cluster tilting subcategories, with the crucial difference that in $\mathcal{D}$, the cluster tilting subcategories have infinitely many indecomposable objects, so do not correspond to cluster tilting objects.

\\

\ \ The talk will show how the cluster tilting subcategories have a rich combinatorial

structure: They can be parametrised by “triangulations of the $\infty$-gon”. These are certain maximal collections of non-crossing arcs between non-neighbouring integers.

\\

\ \ This will be used to show how to obtain a subcategory of $\mathcal{D}$ which has all the properties of a cluster tilting subcategory, except that it is not functorially finite. There will also be remarks on how $\mathcal{D}$ generalises the situation from Dynkin type $A_n$ , and how triangulations of the $\infty$-gon are new and interesting combinatorial objects.

Wed, 26 May 2010
17:00
L2

Editing the manuscripts of Évariste Galois (1811–1832)

Peter Neumann
(Oxford)
Abstract

What do historians of mathematics do? What sort of questions do they ask? What kinds of sources do they use? This series of four informal lectures will demonstrate some of the research on history of mathematics currently being done in Oxford. The subjects range from the late Renaissance mathematician Thomas Harriot (who studied at Oriel in 1577) to the varied and rapidly developing mathematics of the seventeenth century (as seen through the eyes of Savilian Professor John Wallis, and others) to the emergence of a new kind of algebra in Paris around 1830 in the work of the twenty-year old Évariste Galois.

Each lecture will last about 40 minutes, leaving time for questions and discussion. No previous knowledge is required: the lectures are open to anyone from the department or elsewhere, from undergraduates upwards.

Subscribe to L2