Kazhdan quotients of Golod-Shafarevich groups
Abstract
Informally speaking, a finitely generated group G is said to be {\it Golod-Shafarevich} (with respect to a prime p) if it has a presentation with a ``small'' set of relators, where relators are counted with different weights depending on how deep they lie in the Zassenhaus p-filtration. Golod-Shafarevich groups are known to behave like (non-abelian) free groups in many ways: for instance, every Golod-Shafarevich group G has an infinite torsion quotient, and the pro-p completion of G contains a non-abelian free pro-p group. In this talk I will extend the list of known ``largeness'' properties of Golod-Shafarevich groups by showing that they always have an infinite quotient with Kazhdan's property (T). An important consequence of this result is a positive answer to a well-known question on non-amenability of Golod-Shafarevich groups.
Divisibility properties of character degrees and p-local structure of finite groups
Abstract
Many classical results and conjectures in representation theory of finite groups (such as
theorems of Thompson, Ito, Michler, the McKay conjecture, ...) address the influence of global properties of representations of a finite group G on its p-local structure. It turns out that several of them also admit real, resp. rational, versions, where one replaces the set of all complex representations of G by the much smaller subset of real, resp. rational, representations. In this talk we will discuss some of these results, recently obtained by the speaker and his collaborators. We will also discuss recent progress on the Brauer height zero conjecture for 2-blocks of maximal defect.
15:45
Extended Topological Field Theories
Abstract
In this lecture, I will review Atiyah's definition of a topological quantum field theory. I'll then sketch the definition of a more elaborate structure, called an "extended topological quantum field theory", and describe a conjecture of Baez and Dolan which gives a classification of these extended theories.
16:30
An example of 2-category
Abstract
We will also explain how these groups of symmetries are related to the notion of endoscopic groups, which was introduced by Langlands in his stabilisation of the trace formula. We will also briefly explain how the symmetry groups help one to acquire a rather good understanding of the cohomology of the Hitchin fibration and eventually the proof of the fundamental lemma in Langlands' program.
Decomposition theorem for abelian fibrations
Abstract
Derived direct image of a proper map with smooth source is a direct sum of simple perverse sheaves with shifts in the degrees. The supports of these simple perverse sheaves are obviously important topological invariants of the map. In general, it is difficult to determine these supports. This is possible for an abelian fibration under some assumptions. This determination has some amazing consequences on equality of number of points of certain algebraic varieties over finite fields and in particular, it implies the so called fundamental lemma in Langlands' program.
Endomorphisms of tensor space and cellular algebras
Abstract
endomorphism algebras in question, both in the classical and quantum cases.