Fri, 03 Oct 2008

10:00 - 17:00
L2

Elastic Stability Workshop

Becca Thomases, Yury Grabovsky, L Mahadevan, Tim Healey, Heinrich Freistühler and Robin Knops
Abstract

The workshop will address current issues related to the stability of solutions in nonlinear elasticity, including local energy minimizers, the stability of growing bodies, global existence for small data, bifurcation and continuation of solutions, and Saint-Venant’s principle.

Fri, 06 Jun 2008
16:30
L2

Towards the Sato-Tate Conjecture for pairs of elliptic curves

Prof. Michael Harris
(Université Paris VII)
Abstract
Let E be an elliptic curve defined by a cubic equation with rational coefficients.
The Sato-Tate Conjecture is a statistical assertion about the variation of the number of points of E over finite fields. I review some of the main steps in my proof of this conjecture with Clozel, Shepherd-Barron, and Taylor, in the case when E has non-integral j-invariant. Emphasis will be placed on the steps involving moduli spaces of certain Calabi-Yau hypersurfaces with level structure.

If one admits a version of the stable trace formula that should soon be available, the same techniques imply that, when E and E' are two elliptic curves that are not isogenous, then the numbers of their points over finite fields are statistically independent. For reasons that have everything to do with the current limits to our understanding of the Langlands program, the analogous conjectures for three or more non-isogenous elliptic curves are entirely out of reach.

Thu, 22 May 2008
17:00
L2

Manipulating thin-film flows: From patterned substrates to evaporating systems

Howard Stone
(Harvard University, USA)
Abstract

The lecture will describe two variants of thin film flows, one involving wetting and the other involving evaporation. First, describing the spreading of mostly wetting liquid droplets on surfaces decorated with assemblies of micron-size cylindrical posts arranged in regular arrays. A variety of deterministic final shapes of the spreading droplets are obtained, including octagons, squares, hexagons and cricles. Dynamic considerations provide a "shape" diagram and suggest rules for control. It is then shown how these ideas can be used to explore (and control) splashing and to create polygonal hydraulic jumps. Second, the evaporation of volatile liquid drops is considered. Using experiments and theory it is shown how the sense of the internal circulation depends on the ratio of the liquid and substrate conductivities. The internal motions control the deposition patterns and so may impact various printing processes. These ideas are then applied to colloid deposition porous media.

Fri, 09 May 2008
16:30
L2

Multiscale Analysis in Biology - Paradigms and Problems

Hans G. Othmer
(University of Minnesota)
Abstract

New techniques in cell and molecular biology have produced huge advances in our understanding of signal transduction and cellular response in many systems, and this has led to better cell-level models for problems ranging from biofilm formation to embryonic development. However, many problems involve very large numbers of cells, and detailed cell-based descriptions are computationally prohibitive at present. Thus rational techniques for incorporating cell-level knowledge into macroscopic equations are needed for these problems. In this talk we discuss several examples that arise in the context of cell motility and pattern formation. We will discuss systems in which the micro-to-macro transition can be made more or less completely, and also describe other systems that will require new insights and techniques.

Mon, 10 Mar 2008

09:30 - 16:30
L2

OxMOS Workshop: Fracture: modelling, analysis and computation

Various
Abstract

Fracture mechanics is a significant scientific field of great practical importance. Recently the subject has been invigorated by a number of important accomplishments. From the viewpoint of fundamental science there have been interesting new developments aimed at understanding fracture at the atomic scale; simultaneously, active research programmes have focussed on mathematical modelling, experimentation and computation at macroscopic scales. The workshop aims to examine various different approaches to the modelling, analysis and computation of fracture. The programme will allow time for discussion.

Invited speakers include:

Andrea Braides (Università di Roma II, Italy)

Adriana Garroni (Università di Roma, “La Sapienza”, Italy)

Christopher Larsen (Worcester Polytechnic Institute, USA)

Matteo Negri (Università di Pavia, Italy)

Robert Rudd (Lawrence Livermore National Laboratory, USA)

Fri, 29 Feb 2008
15:30
L2

The Modular Flow

Professor Etienne Ghys
(ENS Lyon)
Abstract

A lattice in the plane is a discrete subgroup in R^2 isomorphic to Z^2 ; it is unimodular if the area of the quotient is 1. The space of unimodular lattices is a venerable object in mathematics related to topology, dynamics and number theory. In this talk, I'd like to present a guided tour of this space, focusing on its topological aspect. I will describe in particular the periodic orbits of the modular flow, giving rise to beautiful "modular knots". I will show some animations

Subscribe to L2