Thu, 24 Oct 2024

12:00 - 13:00
L3

Effective elasticity and dynamics of helical filaments under distributed loads

Michael Gomez
(Kings College London)
Abstract

Slender elastic filaments with intrinsic helical geometry are encountered in a wide range of physical and biological settings, ranging from coil springs in engineering to bacteria flagellar filaments. The equilibrium configurations of helical filaments under a variety of loading types have been well studied in the framework of the Kirchhoff rod equations. These equations are geometrically nonlinear and so can account for large, global displacements of the rod. This geometric nonlinearity also makes a mathematical analysis of the rod equations extremely difficult, so that much is still unknown about the dynamic behaviour of helical rods under external loading.

An important class of simplified models consists of 'equivalent-column' theories. These model the helical filament as a naturally-straight beam (aligned with the helix axis) for which the extensional and torsional deformations are coupled. Such theories have long been used in engineering to describe the free vibrations of helical coil springs, though their validity remains unclear, particularly when distributed forces and moments are present. In this talk, we show how such an effective theory can be derived systematically from the Kirchhoff rod equations using the method of multiple scales. Importantly, our analysis is asymptotically exact in the small-wavelength limit and can account for large, unsteady displacements. We then illustrate our theory with two loading scenarios: (i) a heavy helical rod deforming under its own weight; and (ii) axial rotation (twirling) in viscous fluid, which may be considered as a simple model for a bacteria flagellar filament. More broadly, our analysis provides a framework to develop reduced models of helical rods in a wide variety of physical and biological settings, as well as yielding analytical insight into their tensile instabilities.

Thu, 17 Oct 2024

12:00 - 13:00
L3

Microswimmer motility and natural robustness in pattern formation: the emergence and explanation of non-standard multiscale phenomena

Mohit Dalwadi
(Mathematical Institute)
Abstract
In this talk I use applied mathematics to understand emergent multiscale phenomena arising in two fundamental problems in fluids and biology.
 
In the first part, I discuss an overarching question in developmental biology: how is it that cells are able to decode spatio-temporally varying signals into functionally robust patterns in the presence of confounding effects caused by unpredictable or heterogeneous environments? This is linked to the general idea first explored by Alan Turing in the 1950s. I present a general theory of pattern formation in the presence of spatio-temporal input variations, and use multiscale mathematics to show how biological systems can generate non-standard dynamic robustness for 'free' over physiologically relevant timescales. This work also has applications in pattern formation more generally.
 
In the second part, I investigate how the rapid motion of 3D microswimmers affects their emergent trajectories in shear flow. This is an active version of the classic fluid mechanics result of Jeffery's orbits for inert spheroids, first explored by George Jeffery in the 1920s. I show that the rapid short-scale motion exhibited by many microswimmers can have a significant effect on longer-scale trajectories, despite the common neglect of this motion in some mathematical models, and how to systematically incorporate this effect into modified versions of Jeffery's original equations.
Fri, 31 May 2024

12:00 - 13:15
L3

Multipartite Edge Modes and Tensor Networks

Ronak Soni
(Cambridge DAMTP)
Abstract
Holographic tensor networks model AdS/CFT, but so far they have been limited by involving only systems that are very different from gravity. Unfortunately, we cannot straightforwardly discretise gravity to incorporate it, because that would break diffeomorphism invariance. In this note, we explore a resolution. In low dimensions, gravity can be written as a topological gauge theory which can be discretised without breaking gauge-invariance. However, new problems arise. Foremost, we now need a qualitatively new kind of "area operator" which has no relation to the number of links along the cut and is instead topological. Secondly, the inclusion of matter becomes trickier. We successfully construct a tensor network both including matter and with this new type of area. Notably, while this area is still related to the entanglement in "edge mode" degrees of freedom, the edge modes are no longer bipartite entangled pairs. Instead they are highly multipartite. Along the way, we calculate the entropy of novel subalgebras in a particular topological gauge theory. We also show that the multipartite nature of the edge modes gives rise to non-commuting area operators, a property that other tensor networks do not exhibit. Based on arXiv:2404.03651.



 

Thu, 13 Jun 2024
17:00
L3

The iterability problem and the transfinite generalization of AD

Douglas Blue
(University of Pittsburgh)
Abstract

I will exposit some recent joint work with Paul Larson and Grigor Sargsyan that uses higher models of the Axiom of Determinacy---models with nontrivial structure above $\Theta$, the least ordinal which is not the surjective image of the reals---to show that instances of the fundamental problem of inner model theory, the iterability conjecture, consistently fail.

Thu, 09 May 2024

17:00 - 18:00
L3

Existentially closed valued difference fields

Jan Dobrowolski
(University of Manchester)
Abstract
I will report on a joint work in progress with F. Gallinaro and R. Mennuni in which we aim to understand the (non-elementary) class of existentially closed valued difference fields (of equicharacteristic zero). As our approach relies on our earlier results with Mennuni about automorphisms of ordered abelian groups, I will start by briefly overviewing those.
Thu, 30 May 2024

17:00 - 18:00
L3

Failure of the amalgamation property for definable types

Martin Hils
(University of Münster)
Abstract

In recent joint work with Pablo Cubides Kovacsics and Jinhe Ye on beautiful pairs in the unstable context, the amalgamation property (AP) for the class of global definable types plays a key role. In the talk, we will first indicate some important cases in which AP holds, and we will then present the construction of examples of theories, obtained in joint work with Rosario Mennuni, where AP fails.

Mon, 17 Jun 2024
15:30
L3

The Brownian loop measure on Riemann surfaces and applications to length spectra

Professor Yilin Wang
(IHES)
Abstract
Lawler and Werner introduced the Brownian loop measure on the Riemann sphere in studying Schramm-Loewner evolution. It is a sigma-finite measure on Brownian-type loops, which satisfies conformal invariance and restriction property. We study its generalization on a Riemannian surface $(X,g)$. In particular, we express its total mass in every free homotopy class of closed loops on $X$ as a simple function of the length of the geodesic in the homotopy class for the constant curvature metric conformal to $g$. This identity provides a new tool for studying Riemann surfaces' length spectrum. One of the applications is a surprising identity between the length spectra of a compact surface and that of the same surface with an arbitrary number of cusps. This is a joint work with Yuhao Xue (IHES). 


 

Thu, 16 May 2024

17:00 - 18:00
L3

Some model theory of Quadratic Geometries

Charlotte Kestner
(Imperial College London)
Abstract
I will introduce the theories of orthogonal spaces and quadratic geometries over infinite fields, giving some background on Lie coordinatisable structures, and bilinear forms over infinite fields. I will then go on to explain the quantifier elimination for these structures, and discuss the axiomatisation of their pseudo-finite completions and model companions.  This is joint work in progress with Nick Ramsey.


 

Tue, 21 May 2024

10:30 - 17:30
L3

One-Day Meeting in Combinatorics

Multiple
Further Information

The speakers are Carla Groenland (Delft), Shoham Letzter (UCL), Nati Linial (Hebrew University of Jerusalem), Piotr Micek (Jagiellonian University), and Gabor Tardos (Renyi Institute). Please see the event website for further details including titles, abstracts, and timings. Anyone interested is welcome to attend, and no registration is required.

Thu, 25 Apr 2024

17:00 - 18:00
L3

Bi-interpretability and elementary definability of Chevalley groups

Elena Bunina
(Bar-Ilan University)
Abstract

We prove that any adjoint Chevalley group over an arbitrary commutative ring is regularly bi-interpretable with this ring. The same results hold for central quotients of arbitrary Chevalley groups and for Chevalley groups with bounded generation.
Also, we show that the corresponding classes of Chevalley groups (or their central quotients) are elementarily definable and even finitely axiomatizable.

Subscribe to L3