Mon, 05 Nov 2012
15:45
L3

Radford's theorem and the belt trick

Noah Snyder
(MPI Bonn)
Abstract

Topological field theories give a connection between

topology and algebra. This connection can be exploited in both

directions: using algebra to construct topological invariants, or

using topology to prove algebraic theorems. In this talk, I will

explain an interesting example of the latter phenomena. Radford's

theorem, as generalized by Etingof-Nikshych-Ostrik, says that in a

finite tensor category the quadruple dual functor is easy to

understand. It's somewhat mysterious that the double dual is hard to

understand but the quadruple dual is easy. Using topological field

theory, we show that Radford's theorem is exactly the consequence of

the Dirac belt trick in topology. That is, the double dual

corresponds to the generator of $\pi_1(\mathrm{SO}(3))$ and so the

quadruple dual is trivial in an appropriate sense exactly because

$\pi_1(\mathrm{SO}(3)) \cong \mathbb{Z}/2$. This is part of a large

project, joint with Chris Douglas and Chris Schommer-Pries, to

understand local field theories with values in the 3-category of

tensor categories via the cobordism hypothesis.

Mon, 22 Oct 2012

15:45 - 16:45
L3

Matrix group actions on CAT(0) spaces and manifolds

Shengkui Ye
(Oxford)
Abstract

I will talk about the fixed-point properties of matrix groups acting CAT(0) paces, spheres and acyclic manifolds. The matrix groups include general linear groups, sympletic groups, orthogonal groups and classical unitary groups over general rings. We will show that for lower dimensional CAT(0) spaces, the group action of a matrix group always has a global fixed point and that for lower dimensional spheres and acyclic manifolds, a group action by homeomorphisms is always trivial. These results give generalizations of results of Farb concerning Chevalley groups over commutative rings and those of Bridson-Vogtmann, Parwani and Zimmermann concerning the special linear groups SL_{n}(Z) and symplectic groups Sp_{2n}(Z).

Mon, 12 Nov 2012

12:00 - 13:00
L3

Scattering Amplitudes in Three Dimensions

Arthur Lipstein
(Oxford)
Abstract
I will describe scattering amplitudes of 3d Yang-Mills and Chern-Simons theories and what they may imply about string theory and M-theory.
Mon, 05 Nov 2012

12:00 - 13:00
L3

Global Aspects of F-theory on singular CY fourfolds

Sakura Schafer-Nameki
(Kings College London)
Abstract
F-theory compactifications on singular elliptic Calabi-Yau fourfolds provide an ideal framework to study supersymmetric Grand Unified Theories. Recent years have seen much progress in local F-theory model building. Understanding the global constraints for realizing local models are key in estabilishing a consistent F-theoretic realization. We will address these questions by analyzing the structure of the singular elliptic CY fourfolds, which form the geometric foundation for these compactification, as well as the construction of globally consistent G_4 flux.
Tue, 09 Oct 2012

14:30 - 15:30
L3

Tiling Euclidean space with a polytope, by translations

Sinai Robins
(Nanyang Technological University)
Abstract

We study the problem of covering R^d by overlapping translates of a convex polytope, such that almost every point of R^d is covered exactly k times. Such a covering of Euclidean space by a discrete set of translations is called a k-tiling. The investigation of simple tilings by translations (which we call 1-tilings in this context) began with the work of Fedorov and Minkowski, and was later extended by Venkov and McMullen to give a complete characterization of all convex objects that 1-tile R^d. By contrast, for k ≥ 2, the collection of polytopes that k-tile is much wider than the collection of polytopes that 1-tile, and there is currently no known analogous characterization for the polytopes that k-tile. Here we first give the necessary conditions for polytopes P that k-tile, by proving that if P k-tiles R^d by translations, then it is centrally symmetric, and its facets are also centrally symmetric. These are the analogues of Minkowski’s conditions for 1-tiling polytopes, but it turns out that very new methods are necessary for the development of the theory. In the case that P has rational vertices, we also prove that the converse is true; that is, if P is a rational, centrally symmetric polytope, and if P has centrally symmetric facets, then P must k-tile R^d for some positive integer k.

Mon, 29 Oct 2012

12:00 - 13:00
L3

String compactifications on SU(3) structure manifolds

Magdalena Larfors
(Oxford)
Abstract

In the absence of background fluxes and sources, the compactification of string theories on Calabi-Yau threefolds leads to supersymmetric solutions.Turning on fluxes, e.g. to lift the moduli of the compactification, generically forces the geometry to break the Calabi-Yau conditions, and to satisfy, instead, the weaker condition of reduced structure. In this talk I will discuss manifolds with SU(3) structure, and their relevance for heterotic string compacitications. I will focus on domain wall solutions and how explicit example geometries can be constructed.

Mon, 08 Oct 2012

12:00 - 13:00
L3

Lines on the Dwork Pencil of Quintic Threefolds

Philip Candelas
(Oxford)
Abstract
I will discuss some of the subtleties involved in counting lines on Calabi-Yau threefolds and then discuss the lines on the Dwork pencil of quintic threefolds. It has been known for some time that the manifolds of the pencil contain continuous families of lines and it is known from the work of Angca Mustata that there are 375 discrete lines and also two families parametrized by isomorphic curves that are 125:1 covers of genus six curves $C_{\pm\varphi}$. The surprise is that an explicit parametrization of these families is not as complicated as might have been anticipated.  We find, in this way, what should have anticipated from the outset, that the curves $C_\varphi$ are the curves of the Wiman pencil.  
Subscribe to L3