15:45
Radford's theorem and the belt trick
Abstract
Topological field theories give a connection between
topology and algebra. This connection can be exploited in both
directions: using algebra to construct topological invariants, or
using topology to prove algebraic theorems. In this talk, I will
explain an interesting example of the latter phenomena. Radford's
theorem, as generalized by Etingof-Nikshych-Ostrik, says that in a
finite tensor category the quadruple dual functor is easy to
understand. It's somewhat mysterious that the double dual is hard to
understand but the quadruple dual is easy. Using topological field
theory, we show that Radford's theorem is exactly the consequence of
the Dirac belt trick in topology. That is, the double dual
corresponds to the generator of $\pi_1(\mathrm{SO}(3))$ and so the
quadruple dual is trivial in an appropriate sense exactly because
$\pi_1(\mathrm{SO}(3)) \cong \mathbb{Z}/2$. This is part of a large
project, joint with Chris Douglas and Chris Schommer-Pries, to
understand local field theories with values in the 3-category of
tensor categories via the cobordism hypothesis.
Matrix group actions on CAT(0) spaces and manifolds
Abstract
I will talk about the fixed-point properties of matrix groups acting CAT(0) paces, spheres and acyclic manifolds. The matrix groups include general linear groups, sympletic groups, orthogonal groups and classical unitary groups over general rings. We will show that for lower dimensional CAT(0) spaces, the group action of a matrix group always has a global fixed point and that for lower dimensional spheres and acyclic manifolds, a group action by homeomorphisms is always trivial. These results give generalizations of results of Farb concerning Chevalley groups over commutative rings and those of Bridson-Vogtmann, Parwani and Zimmermann concerning the special linear groups SL_{n}(Z) and symplectic groups Sp_{2n}(Z).
Scattering Amplitudes in Three Dimensions
Abstract
Global Aspects of F-theory on singular CY fourfolds
Abstract
14:15
Smooth structures on non-orientable 4-manifolds and orientation-reversing involutions
Tiling Euclidean space with a polytope, by translations
Abstract
We study the problem of covering R^d by overlapping translates of a convex polytope, such that almost every point of R^d is covered exactly k times. Such a covering of Euclidean space by a discrete set of translations is called a k-tiling. The investigation of simple tilings by translations (which we call 1-tilings in this context) began with the work of Fedorov and Minkowski, and was later extended by Venkov and McMullen to give a complete characterization of all convex objects that 1-tile R^d. By contrast, for k ≥ 2, the collection of polytopes that k-tile is much wider than the collection of polytopes that 1-tile, and there is currently no known analogous characterization for the polytopes that k-tile. Here we first give the necessary conditions for polytopes P that k-tile, by proving that if P k-tiles R^d by translations, then it is centrally symmetric, and its facets are also centrally symmetric. These are the analogues of Minkowski’s conditions for 1-tiling polytopes, but it turns out that very new methods are necessary for the development of the theory. In the case that P has rational vertices, we also prove that the converse is true; that is, if P is a rational, centrally symmetric polytope, and if P has centrally symmetric facets, then P must k-tile R^d for some positive integer k.
String compactifications on SU(3) structure manifolds
Abstract
In the absence of background fluxes and sources, the compactification of string theories on Calabi-Yau threefolds leads to supersymmetric solutions.Turning on fluxes, e.g. to lift the moduli of the compactification, generically forces the geometry to break the Calabi-Yau conditions, and to satisfy, instead, the weaker condition of reduced structure. In this talk I will discuss manifolds with SU(3) structure, and their relevance for heterotic string compacitications. I will focus on domain wall solutions and how explicit example geometries can be constructed.