Triangulated defect categories
Abstract
We will define certain Verdier quotients of the singularity category of a ring R, called defect categories. The triviality of these defect
categories determine, for example, whether a commutative local ring is Gorenstein, or a complete intersection. The dimension (in the sense of Rouquier) of the defect category thus gives a measure of how close such a ring is to being Gorenstein, respectively, a complete intersection. Examples will be given. This is based on joint work with Petter Bergh and Steffen Oppermann.
Reduced classes and curve counting on surfaces
Abstract
Counting nodal curves in linear systems $|L|$ on smooth projective surfaces $S$ is a problem with a long history. The G\"ottsche conjecture, now proved by several people, states that these counts are universal and only depend on $c_1(L)^2$, $c_1(L)\cdot c_1(S)$, $c_1(S)^2$ and $c_2(S)$. We present a quite general definition of reduced Gromov-Witten and stable pair invariants on S. The reduced stable pair theory is entirely computable. Moreover, we prove that certain reduced Gromov-Witten and stable pair invariants with many point insertions coincide and are both equal to the nodal curve counts appearing in the Göttsche conjecture. This can be seen as version of the MNOP conjecture for the canonical bundle $K_S$. This is joint work with R. P. Thomas.
SU(3)-Structures in Heterotic Compactifications
Abstract
I will give an introduction to how SU(3)-structures appear in heterotic string theory and string compactifications. I will start by considering the zeroth order SU(3)-holonomy Calabi-Yau scenario, and then see how this generalizes when higher order effects are considered. If time, I will discuss some of my own work.
Generic string/M theory Predictions for Particle Physics and Dark Matter
Conformal Cyclic Cosmology: Its Current Status, and its Role in the Emergence of Rest-Mass
Diffeomorphism equivariance and the scanning map
Abstract
Given a manifold $M$ and a basepointed labelling space $X$ the space of unordered finite configurations in $M$ with labels in $X$, $C(M;X)$ is the space of finite unordered tuples of points in $M$, each point with an associated point in $X$. The space is topologised so that particles cannot collide. Given a compact submanifold $M_0\subset M$ we define $C(M,M_0;X)$ to be the space of unordered finite configuration in which points `vanish' in $M_0$. The scanning map is a homotopy equivalence between the configuration space and a section space of a certain $\Sigma^nX$-bundle over $M$. Throughout the 70s and 80s this map has been given several unsatisfactory and convoluted definitions. A natural question to ask is whether the map is equivariant under the diffeomorphism group of the underlying manifold. However, any description of the map relies heavily on `little round $\varepsilon$-balls' and so only actions by isometry have any chance at equivariance. The goal of this talk is to give a more natural definition of the scanning map and show that diffeomorphism equivariance is an easy consequence.
Affine MV polytopes and preprojective algebras
Abstract
Mirkovic-Vilonen polytopes are a combinatorial tool for studying
perfect bases for representations of semisimple Lie algebras. They
were originally introduced using MV cycles in the affine Grassmannian,
but they are also related to the canonical basis. I will explain how
MV polytopes can also be used to describe components of Lusztig quiver
varieties and how this allows us to generalize the theory of MV
polytopes to the affine case.