Connecting Schanuel's Conjecture to Shapiro's Conjecture
Abstract
Shapiro's Conjecture says that two classical exponential polynomials over the complexes can have infinitely many common zeros only for algebraic reasons. I will explain the history of this, the connection to Schanuel's Conjecture, and sketch a proof for the complexes using Schanuel, as well as an unconditional proof for Zilber's fields.
Configuration spaces and homological stability
Abstract
For a fixed background manifold $M$ and parameter-space $X$, the associated configuration space is the space of $n$-point subsets of $M$ with parameters drawn from $X$ attached to each point of the subset, topologised in a natural way so that points cannot collide. One can either remember or forget the ordering of the n points in the configuration, so there are ordered and unordered versions of each configuration space.
It is a classical result that the sequence of unordered configuration spaces, as $n$ increases, is homologically stable: for each $k$ the degree-$k$ homology is eventually independent of $n$. However, a simple counterexample shows that this result fails for ordered configuration spaces. So one could ask whether it's possible to remember part of the ordering information and still have homological stability.
The goal of this talk is to explain the ideas behind a positive answer to this question, using 'oriented configuration spaces', in which configurations are equipped with an ordering - up to even permutations - of their points. I will also explain how this case differs from the unordered case: for example the 'rate' at which the homology stabilises is strictly slower for oriented configurations.
If time permits, I will also say something about homological stability with twisted coefficients.
Mixed 3-manifolds are virtually special
Abstract
This is joint work with Dani Wise and builds on his earlier
work. Let M be a compact oriented irreducible 3-manifold which is neither a
graph manifold nor a hyperbolic manifold. We prove that the fundamental
group of M is virtually special. This means that it virtually embeds in a
right angled Artin group, and is in particular linear over Z.
On the decidability of the zero divisor problem
Abstract
Let G be a finitely generated group generated by g_1,..., g_n. Consider the alphabet A(G) consisting of the symbols g_1,..., g_n and the symbols '+' and '-'. The words in this alphabet represent elements of the integral group ring Z[G]. In the talk we will investigate the computational problem of deciding whether a word in the alphabet A(G) determines a zero-divisor in Z[G]. We will see that a version of the Atiyah conjecture (together with some natural assumptions) imply decidability of the zero-divisor problem; however, we'll also see that in the group (Z/2 \wr Z)^4 the zero-divisor problem is not decidable. The technique which allows one to see the last statement involves "embedding" a Turing machine into a group ring.
A space that admits all possible orbit spectra of homeomorphisms of uncountable compact metric spaces
Abstract
Joint work with: Sina Greenwood, Brian Raines and Casey Sherman
Abstract: We say a space $X$ with property $\C P$ is \emph{universal} for orbit spectra of homeomorphisms with property $\C P$ provided that if $Y$ is any space with property $\C P$ and the same cardinality as $X$ and $h:Y\to Y$ is any (auto)homeomorphism then there is a homeomorphism$g:X\to X$ such that the orbit equivalence classes for $h$ and $g$ are isomorphic. We construct a compact metric space $X$ that is universal for homeomorphisms of compact metric spaces of cardinality the continuum. There is no universal space for countable compact metric spaces. In the presence of some set theoretic assumptions we also give a separable metric space of size continuum that is universal for homeomorphisms on separable metric spaces.