Unital associahedra and homotopy unital homotopy associative algebras
Abstract
The classical associahedra are cell complexes, in fact polytopes,
introduced by Stasheff to parametrize the multivariate operations
naturally occurring on loop spaces of connected spaces.
They form a topological operad $ Ass_\infty $ (which provides a resolution
of the operad $ Ass $ governing spaces-with-associative-multiplication)
and the complexes of cellular chains on the associahedra form a dg
operad governing $A_\infty$-algebras (that is, a resolution of the
operad governing associative algebras).
In classical applications it was not necessary to consider units for
multiplication, or it was assumed units were strict. The introduction
of non-strict units into the picture was considerably harder:
Fukaya-Ono-Oh-Ohta introduced homotopy units for $A_\infty$-algebras in
their work on Lagrangian intersection Floer theory, and equivalent
descriptions of the dg operad for homotopy unital $A_\infty$-algebras
have now been given, for example, by Lyubashenko and by Milles-Hirsch.
In this talk we present the "missing link": a cellular topological
operad $uAss_\infty$ of "unital associahedra", providing a resolution
for the operad governing topological monoids, such that the cellular
chains on $uAss_\infty$ is precisely the dg operad of
Fukaya-Ono-Oh-Ohta.
(joint work with Fernando Muro, arxiv:1110.1959, to appear Forum Math)