Tue, 08 Feb 2011

15:45 - 16:45
L3

Derived Categories of Cubic 4-Folds

Nicolas Addington
(Imperial College London)
Abstract

If $X$ is a Fano variety with canonical bundle $O(-k)$, its derived category

has a semi-orthogonal decomposition (I will say what that means)

\[ D(X) = \langle O(-k+1), ..., O(-1), O, A \rangle, \]

where the subcategory $A$ is the "interesting piece" of $D(X)$. In the previous talk we saw that $A$ can have very rich geometry. In this talk we will see a less well-understood example of this: when $X$ is a smooth cubic in $P^5$, $A$ looks like the derived category of a K3 surface. We will discuss Kuznetsov's conjecture that $X$ is rational if and only if $A$ is geometric, relate it to Hassett's earlier work on the Hodge theory of $X$, and mention an autoequivalence of $D(Hilb^2(K3))$ that I came across while studying the problem.

Thu, 27 Jan 2011
17:00
L3

Decidability of large fields of algebraic numbers

Arno Fehm
(Konstanz)
Abstract

   I will present a decidability result for theories of large fields of algebraic numbers, for example certain subfields of the field of totally real algebraic numbers. This result has as special cases classical theorems of Jarden-Kiehne, Fried-Haran-Völklein, and Ershov.

   The theories in question are axiomatized by Galois theoretic properties and geometric local-global principles, and I will point out the connections with the seminal work of Ax on the theory of finite fields.

Thu, 20 Jan 2011
17:00
L3

Tame measures

Professor Tobias Kaiser
Abstract

We are interested in measure theory and integration theory that ¯ts into the
o-minimal context. Therefore we introduce the following de¯nition:
Given an o-minimal structure M on the ¯eld of reals and a measure ¹ de¯ned on the
Borel sets of some Rn, we call ¹ M-tame if there is an o-minimal expansion of M such
that for every parameter family of functions on Rn that is de¯nable in M the family of
integrals with respect to ¹ is de¯nable in this o-minimal expansion.
In the ¯rst part of the talk we give the de¯nitions and motivate them by existing and
many new examples. In the second one we discuss the Lebesgue measure in this context.
In the ¯nal part we obtain de¯nable versions of important theorems like the theorem of
Radon-Nikodym and the Riesz representation theorem. These results allow us to describe
tame measures explicitly.
1

Thu, 10 Feb 2011

16:00 - 17:00
L3

Applications of nilsequences to number theory

Ben Green
(Cambridge)
Abstract

I will introduce the notion of a nilsequence, which is a kind of

"higher" analogue of the exponentials used in classical Fourier analysis. I

will summarise the current state of our understanding of these objects. Then

I will discuss a variety of applications: to solving linear equations in

primes (joint with T. Tao), to a version of Waring's problem for so-called

generalised polynomials (joint with V. Neale and Trevor Wooley) and to

solving certain pairs of diagonal quadratic equations in eight variables

(joint work with L. Matthiesen). Some of the work to be described is a

little preliminary!

Mon, 07 Feb 2011

12:00 - 13:00
L3

Could Spacetime be Causal Structure Alone?

Fay Dowker
(Imperial College)
Abstract
Abstract: In the continuum the answer to the title question is "no". But if spacetime is atomic then the answer is yes. And it so happens that there is rather compelling circumstantial evidence that spacetime is actually discrete at the Planck scale. So now the question becomes, why if spacetime is discrete should it take the form of a discrete causal structure or *order*? The answer is that if you don't put causal order in fundamentally you don't get it out -- at least that's what known models of "emergent spacetime" indicate. If we want to make life easy for ourselves in quantum gravity, then, we should plump for discrete causal order (a "causal set") as the inner basis for spacetime. That, however raises the spectre of wild nonlocality. I will describe recent progress that shows that this wildness can be tamed. In particular we now have an approximately local action for causal sets and I'll explain what that means.
Mon, 31 Jan 2011

12:00 - 13:00
L3

Branes, Boxes and Black Holes

Toby Wiseman
(Imperial College)
Abstract
Abstract: I will begin by reviewing the use of Ricci flow and the associated Ricci soliton equation to provide constructive numerical algorithms to find static vacuum black holes. I will then describe recent progress to generalize these methods to stationary black holes. I will present new results found using these methods, firstly on stationary black holes in spherical boxes, and secondly, black holes localized on a Randall-Sundrum brane. The latter case hopefully resolves the validity of a phenomenologically striking and important conjecture, and also has relevance to AdS-CFT.
Mon, 24 Jan 2011

12:00 - 13:00
L3

Scattering Amplitudes and Holomorphic Linking in Twistor Space

Mathew Bullimore
(Oxford)
Abstract
Recently, there has been exciting progress in scattering amplitudes in supersymmetric gauge theories, one aspect of which is the remarkable duality between amplitudes and Wilson loops. I will explain how the complete planar S-matrix of N=4 super Yang-Mills theory is encoded in the complex analogue of a Wilson loop in holomorphic Chern-Simons theory on twistor space. The dynamics of the theory are encoded in loop equations, which describe deformations of the Wilson Loop and provide new insight into the nature of the amplitude-Wilson loop duality. The loop equations themselves yield powerful recursive methods for scattering amplitudes which are revealed as holomorphic skein relations by interpreting the Wilson loop as the complex analogue of a knot invariant. The talk will be based on the preprint arXiv:1101.1329.
Mon, 17 Jan 2011

12:00 - 13:30
L3

Generalised Geometry and M-theory

David Berman
(Queen Mary University of London)
Abstract
Abstract: We reformulate M-theory in terms of a generalised metric that combines the usual metric and the three form potential. The U-duality group is then a manifest symmetry.
Subscribe to L3