Fri, 11 Jun 2010
09:00
L3

2-Dimensional Algebra and 3-Dimensional Local Field Theory

Chris Douglas
Abstract

Witten showed that the Jones polynomial invariants of knots can be computed in terms of partition functions of a (2+1)-dimensional topological field theory, namely the SU(2) Chern-Simons theory. Reshetikhin and Turaev showed that this theory extends to a (1+1+1)-dimensional topological field theory---that is, there is a Chern-Simons-type invariant associated to 3-manifolds, 3-manifolds with boundary, and 3-manifolds with codimension-2 corners.

I will explain the notion of a local or (0+1+1+1)-dimensionaltopological field theory,  which has, in addition to the structure of a (1+1+1)-dimensional theory, invariants associated to 3-manifolds with codimension-3 corners.  I will describe a notion of 2-dimensional algebra that allows us to construct and investigate such local field theories.  Along the way I will discuss the geometric classification of local field theories, and explain the dichotomy between categorification and algebraification.

 

These talks are based on joint work with Arthur Bartels and Andre Henriques.
Thu, 10 Jun 2010
09:00
L3

Twisted Topological Field Theory in Dimensions 1 and 2 K-Theory and elliptic Cohomology

Chris Douglas
Abstract

Homology counts components and cycles, K-theory counts vector bundles and bundles of Clifford algebra modules.  What about geometric models for other generalized cohomology theories?  There is a vision, introduced by Segal, Stolz, and Teichner, that certain cohomology theories should be expressible in terms of topological field theories.

I will describe how the 0-th K-theory group can be formulated in terms of equivalence classes of 1-dimensional topological field theories.  Then I will discuss what it means to twist a topological field theory, and explain that the n-th K-theory group comes from twisted 1-dimensional topological field theories.

The expectation is that 2-dimensional topological field theories should be analogously related to elliptic cohomology.  I will take an extended digression to explain what elliptic cohomology is and why it is interesting.  Then I will discuss 2-dimensional twisted field theory and explain how it leads us toward a notion of higher

("2-dimensional") algebra.  

 

 

Based on joint work with Arthur Bartels and Andre Henriques
Wed, 09 Jun 2010
09:00
L3

Vector Bundles and K-Theory, Clifford Algebras and Bott Perodicity

Chris Douglas
Abstract

Ordinary homology is a geometrically defined invariant of spaces: the 0-th homology group counts the number of components; the n-th homology group counts n-cycles, which correspond to an intuitive notion of 'n-dimensional holes' in a space.  K-theory, or more specifically the 0-th K-theory group, is defined in terms of vector bundles, and so also has an immediate relationship to geometry.  By contrast, the n-th K-theory group is typically defined homotopy-theoretically using the black box of Bott periodicity.

I will describe a more geometric perspective on K-theory, using Z/2-graded vector bundles and bundles of modules for Clifford algebras.  Along the way I will explain Clifford algebras, 2-categories, and Morita equivalence, explicitly check the purely algebraic 8-fold periodicity of the Clifford algebras, and discuss how and why this periodicity implies Bott periodicity.

The talk will not presume any prior knowledge of K-theory, Clifford algebras, Bott periodicity, or the like.

 

 

Based on joint work with Arthur Bartels and Andre Henriques
Wed, 26 May 2010
14:00
L3

Topological duality and lattice expansions: canonial extensions via Stone duality

Drew Moshier
(Chapman University)
Abstract

Consider the following simple question:

Is there a subcategory of Top that is dually equivalent to Lat?

where Top is the category of topological spaces and continuous maps and Lat is the category

of bounded lattices and bounded lattice homomorphisms.

Of course, the question has been answered positively by specializing Lat, and (less

well-known) by generalizing Top.

The earliest examples are of the former sort: Tarski showed that every complete atomic

Boolean lattice is represented by a powerset (discrete topological space); Birkhoff showed

that every finite distributive lattice is represented by the lower sets of a finite partial order

(finite T0 space); Stone generalized Tarski and then Birkhoff, for arbitrary Boolean and

arbitrary bounded distributive lattices respectively. All of these results specialize Lat,

obtaining a (not necessarily full) subcategory of Top.

As a conceptual bridge, Priestley showed that distributive lattices can also be dually

represented in a category of certain topological spaces augmented with a partial order.

This is an example of the latter sort of result, namely, a duality between a category of

lattices and a subcategory of a generalization of Top.

Urquhart, Hartung and Hartonas developed dualities for arbitrary bounded lattices in

the spirit of Priestley duality, in that the duals are certain topological spaces equipped with

additional structure.

We take a different path via purely topological considerations. At the end, we obtain

an affirmative answer to the original question, plus a bit more, with no riders: the dual

categories to Lat and SLat (semilattices) are certain easily described subcategories of Top

simpliciter. This leads directly to a very natural topological characterization of canonical

extensions for arbitrary bounded lattices.

Building on the topological foundation, we consider lattices expanded with quasioperators,

i.e., operations that suitably generalize normal modal operatos, residuals, orthocomplements

and the like. This hinges on both the duality for lattices and for semilattices

in a natural way.

This talk is based on joint work with Peter Jipsen.

Date: May 2010.

1

Tue, 08 Jun 2010

12:00 - 13:00
L3

G_2 structures, rational curves, and ODEs

Dr Dunajski
(DAMTP)
Abstract

Consider the space M of parabolas y=ax^2+bx+c, with (a, b, c) as coordinates on M. Two parabolas generically intersect at two (possibly complex) points, and we can define a conformal structure on M by declaring two points to be null separated iff the corresponding parabolas are tangent. A simple calculation of discriminant shows that this conformal structure is flat.

In this talk (based on joint works with Godlinski and Sokolov) I shall show how replacing parabolas by rational plane curves of higher degree allows constructing curved conformal structures in any odd dimension. In dimension seven one can use this "twistor" construction to find G_2 structures in a conformal class.

Tue, 08 Jun 2010

14:30 - 15:30
L3

Rigidity of direction-length frameworks

Bill Jackson
(QMUL)
Abstract

Consider a configuration of points in $d$-dimensional Euclidean space

together with a set of constraints

which fix the direction or the distance between some pairs of points.

Basic questions are whether the constraints imply that the configuration

is unique or locally unique up to congruence, and whether it is bounded. I

will describe some solutions

and partial solutions to these questions.

Tue, 01 Jun 2010

14:30 - 15:30
L3

Subspaces in sumsets: a problem of Bourgain and Green

Tom Sanders
(Cambridge)
Abstract

Suppose that $A \subset \mathbb F_2^n$ has density $\Omega(1)$. How

large a subspace is $A+A:=\{a+a’:a,a’ \in A\}$ guaranteed to contain? We

discuss this problem and how the the result changes as the density

approaches $1/2$.

Tue, 25 May 2010

14:30 - 15:30
L3

Embedding spanning graphs into dense and sparse graphs

Anusch Taraz
(Munich)
Abstract

In this talk we will first survey results which guarantee the existence of

spanning subgraphs in dense graphs. This will lead us to the proof of the

bandwidth-conjecture by Bollobas and Komlos, which states that any graph

with minimum degree at least $(1-1/r+\epsilon)n$ contains every r-chromatic graph

with bounded maximum degree and sublinear bandwidth as a spanning subgraph.

We will then move on to discuss the analogous question for a host graph that

is obtained by starting from a sparse random graph G(n,p) and deleting a

certain portion of the edges incident at every vertex.

This is joint work with J. Boettcher, Y. Kohayakawa and M. Schacht.

Tue, 18 May 2010

14:30 - 15:30
L3

Trading 'tween crossings, crosscaps, and handles

Dan Archdeacon
(University of Vermont)
Abstract

Given a graph we want to draw it in the plane; well we *want* to draw it in the plane, but sometimes we just can't. So we resort to various compromises. Sometimes we add crossings and try to minimize the crossings. Sometimes we add handles and try to minimize the number of handles. Sometimes we add crosscaps and try to minimize the number of crosscaps.

Sometimes we mix these parameters: add a given number of handles (or crosscaps) and try to minimize the number of crossings on that surface. What if we are willing to trade: say adding a handle to reduce the number of crossings? What can be said about the relative value of such a trade? Can we then add a second handle to get an even greater reduction in crossings? If so, why didn't we trade the second handle in the first place? What about a third handle?

The crossing sequence cr_1, cr_2, ... , cr_i, ... has terms the minimum number of crossings over all drawings of G on a sphere with i handles attached. The non-orientable crossing sequence is defined similarly. In this talk we discuss these crossing sequences.

By Dan Archdeacon, Paul Bonnington, Jozef Siran, and citing works of others.

Subscribe to L3