Mon, 18 Jan 2010

12:00 - 13:00
L3

T-Duality Invariant String Theory at the Quantum Level

Daniel Thompson
(Queen Mary, UL)
Abstract

In this talk I will be discussing some reformulations of string theory which promote T-duality to the level of a manifest symmetry namely Hull's Doubled Formalism and Klimcik and Severa's  Poisson-Lie T-duality.   Such formalisms double the number of fields but also incorporate some chirality-like constraint. Invoking this constraint leads one to consider sigma-models which, though duality invariant, do not possess manifest Lorentz Invariance.   Whilst such formalisms make sense at a classical level their quantum validity is less obvious.  I address this issue by examining the renormalization of these duality invariant sigma models.  This talk is based upon both forthcoming work and recent work in arXiv:0910.1345 [hep-th] and its antecedents arXiv:0708.2267, arXiv:0712.1121.

Tue, 02 Feb 2010

15:45 - 16:45
L3

Mutations of Quivers in the Minimal Model Programme

Michael Wemyss
(Oxford)
Abstract

Following work of Bridgeland in the smooth case and Chen in the terminal singularities case, I will explain a proposal that extends the existence of flops for threefolds (and the required derived equivalences) to also cover canonical singularities.  Moreover this technique conjecturally says much more than just the existence of the flop, as it shows how the dual graph changes under the flop and also which curves in the flopped variety contract to points without contracting divisors.  This allows us to continue the Minimal Model Programme on the flopped variety in an easy way, thus producing many varieties birational to the given input.    

Mon, 18 Jan 2010
15:45
L3

Wick Rotation in Quantum Field Theory

Professor Graem Segal
(Oxford)
Abstract

Physical space-time is a manifold with a Lorentzianmetric, but the more mathematical treatments of the theory usually prefer toreplace the metric with a positive - i.e. Riemannian - one. The passage fromLorentzian to Riemannian metrics is called 'Wick rotation'. In my talk I shallgive a precise description of what is involved, and shall explain some of itsimplications for physics.

 

Subscribe to L3