Tue, 19 Jan 2010

15:45 - 16:45
L3

Big rational surfaces

Damiano Testa
(Oxford)
Abstract

The Cox ring of a variety is an analogue of the homogeneous coordinate ring of projective space. Cox rings are not defined for every variety and even when they are defined, they need not be finitely generated. Varieties for which the Cox ring is finitely generated are called Mori dream spaces and, as the name suggests, they are particularly well-suited for the Minimal Model Program. Such varieties include toric varieties and del Pezzo surfaces.

I will report on joint work with T. Várilly and M. Velasco where we introduce a class of smooth projective surfaces having finitely generated Cox ring. This class of surfaces contains toric surfaces and (log) del Pezzo surfaces.

Thu, 11 Feb 2010
17:00
L3

Pseudofinite groups and groups of finite Morley rank

Alexandre Borovik
(Manchester)
Abstract

The talks will discuss relations between two major conjectures in the theory of groups of finite Morley rank, a modern chapter of model theoretic algebra. One conjecture, the famous the Cherlin-Zilber Algebraicity Conjecture formulated in 1970-s states that infinite simple groups of finite Morley rank are isomorphic to simple algebraic groups over algebraically closed fields. The other conjecture, due to Hrushovski and more recent, states that a generic automorphism of a simple group of finite Morley rank has pseudofinite group of fixed points.

Hrushovski showed that the Cherlin-Zilber Conjecture implies his conjecture. Proving Hrushovski's Conjecture and reversing the implication would provide a new efficient approach to proof of Cherlin-Zilber Conjecture.

Meanwhile, the machinery that is already available for the work at pseudofinite/finite Morley rank interface already yields an interesting

result: an alternative proof of the Larsen-Pink Theorem (the latter says, roughly speaking, that "large" finite simple groups of matrices are Chevalley groups over finite fields).

Thu, 04 Feb 2010
17:00
L3

Generic dimension groups

Philip Scowcroft
(Wesleyan/Oxford)
Abstract

I will discuss the special properties of dimension groups obtained by model-theoretic forcing

Thu, 28 Jan 2010
17:00
L3

TBA

Jeroen Demeyer
(Gwent)
Thu, 21 Jan 2010
17:00
L3

Counting rational points on certain Pfaffian surfaces.

Gareth Jones
(Manchester)
Abstract

I'll give a brief survey of what is known about the density of rational points on definable sets in o-minimal expansions of the real field, then discuss improving these results in certain cases.

Subscribe to L3