(HoRSe seminar) Tilting and cluster transfromations
Abstract
I'll explain (following Kontsevich and Soibelman) how cluster transformations intertwine non-commutative DT invariants for CY3 algebras related by a tilt.
Non-Expanding Horizons, Shear-Free Congruences and H-spaces
11:30
Shadowing, entropy and a homeomorphism of the pseudoarc.
Abstract
In this talk we present a method of construction of continuous map f from [0, 1] to itself, such that f is topologically mixing, has the shadowing property and the inverse limit of copies of [0, 1] with f as the bounding map is the pseudoarc. This map indeuces a homeomorphism of the pseudoarc with the shadowing property and positive topological entropy. We therefore answer, in the affirmative, a question posed by Chen and Li in 1993 whether such a homeomorphism exists.
Hidden symmetries and higher-dimensional rotating black holes
Abstract
The 4D rotating black hole described by the Kerr geometry possesses many of what was called by Chandrasekhar "miraculous" properties. Most of them can be related to the existence of a fundamental hidden symmetry called the principal conformal Killing-Yano (PCKY) tensor. In my talk I shall demonstrate that, in this context, four dimensions are not exceptional and that the (spherical horizon topology) higher-dimensional rotating black holes are very similar to their four-dimensional cousins. Namely, I shall present the most general spacetime admitting the PCKY tensor and show that is possesses the following properties: 1) it is of the algebraic type D, 2) it allows a separation of variables for the Hamilton-Jacobi, Klein-Gordon, Dirac, gravitational, and stationary string equations, 3) the geodesic motion in such a spacetime is completely integrable, 4) when the Einstein equations with the cosmological constant are imposed the metric becomes the Kerr-NUT-(A)dS spacetime. Some of these properties remain valid even when one includes the electromagnetic field.
12:00
Non-existence of stationary two-black-hole configurations
Abstract
12:00
From the geometry of spacetime to the geometry of numbers
Abstract
One of the major open challenges in general relativity is the classification of black hole solutions in higher dimensional theories. I will explain a recent result in this direction in the context of Kaluza-Klein spacetimes admitting a sufficient number N of commuting U(1)-symmetries. It turns out that the black holes in such a theory are characterized by the usual asymptotic charges, together with certain combinatorical data and moduli. The combinatorial data characterize the nature of the U(1)^N-action, and its analysis is closely related to properties of integer lattices and questions in the area of geometric number theory. I will also explain recent results on extremal black holes which show that such objects display remarkable ``symmetry enhancement'' properties