Multicolour Ramsey numbers for cycles
Abstract
In this talk, we shall discuss recent developments in the case when the graphs $L_1,\dots,L_k$ are all cycles and $k\ge2$.
15:45
The asymptotic geometry of mapping class groups and application
Abstract
I shall describe the asymptotic geometry of the mapping class
group, in particular its tree-graded structure and
its equivariant embedding in a product of trees.
This can be applied to study homomorphisms into mapping class
groups defined on groups with property (T) and on lattices in semisimple groups.
The talk is based upon two joint works with J. Behrstock, Sh. Mozes and M. Sapir.
12:00
A black hole uniqueness theorem.
Abstract
Klainerman on the black hole uniqueness problem. A classical result of
Hawking (building on earlier work of Carter and Robinson) asserts that any
vacuum, stationary black hole exterior region must be isometric to the
Kerr exterior, under the restrictive assumption that the space-time metric
should be analytic in the entire exterior region.
We prove that Hawking's theorem remains valid without the assumption of
analyticity, for black hole exteriors which are apriori assumed to be "close"
to the Kerr exterior solution in a very precise sense. Our method of proof
relies on certain geometric Carleman-type estimates for the wave operator.
Homological mirror symmetry for Brieskorn-Pham singularities
Abstract
A polynomial $f$ is said to be a Brieskorn-Pham polynomial if
$ f = x_1^{p_1} + ... + x_n^{p_n}$
for positive integers $p_1,\ldots, p_n$. In the talk, I will discuss my joint work with Masahiro Futaki on the equivalence between triangulated category of matrix factorizations of $f$ graded with a certain abelian group $L$ and the Fukaya-Seidel category of an exact symplectic Lefschetz fibration obtained by Morsifying $f$.
15:45
The Blob Complex
Abstract
We define a chain complex B_*(C, M) (the "blob complex") associated to an n-category C and an n-manifold M. This is in some sense the derived category version of a TQFT. Various special cases of the blob complex are
familiar: (a) if M = S^1, then the blob complex is homotopy equivalent to the Hochschild complex of the 1-category C; (b) for * = 0, H_0 of the blob complex is the Hilbert space of the TQFT based on C; (c) if C is a commutative polynomial ring (viewed as an n-category), then the blob complex is homotopy equivalent to singular chains on the configuration (Dold-Thom) space of M. The blob complex enjoys various nice formal properties, including a higher dimensional generalization of the Deligne conjecture for Hochschild cohomology.
If time allows I will discuss applications to contact structures on 3-manifolds and Khovanov homology for links in the boundaries of 4-manifolds. This is joint work with Scott Morrison.
15:45
Decomposition complexity of metric spaces
Abstract
I shall describe the notion of finite decomposition complexity (FDC), introduced in joint work with Romain Tessera and Guoliang Yu on the Novikov and related conjectures. The talk will focus on the definition of FDC and examples of groups having FDC.