17:00
Etale cohomology of difference schemes
Abstract
Difference schemes constitute important building blocks in the model-theoretic study of difference fields.
Our goal is to pursue their number-theoretic aspects much further than required by model theory.
Roughly speaking, a difference scheme (variety) is a scheme
(variety) with a distinguished endomorphism. We will explain how to extend the methods of etale cohomology to this context and, time permitting, we will show the calculation of difference etale cohomology in some interesting cases.
14:15
$\pi$-convergence: The dynamics of isometries of Hadamard spaces on the boundary
Abstract
It a classical result from Kleinian groups that a discrete group, $G$, of isometries of hyperbolic k-space $\Bbb H^k$ will act on the
boundary sphere, $S^{k-1}$, of $\Bbb H^k$ as a convergence group.
That is:
For every sequence of distinct isometries $(g_i)\subset G$ there is a subsequence ${g_i{_j})$ and points $n,p \in \S^{k-1}$ such that for $ x \in S^{k-1} -\{n\}$, $g_i_{j}(x) \to p$ uniformly on compact subsets
14:15
Monoids of moduli spaces of manifolds
Abstract
Joint work with Soren Galatius. We study categories C of d-dimensional cobordisms, from the perspective of Galatius, Madsen, Tillmann and Weiss. Their main result is the determination of the homotopy type of the classifying-space of such cobordism categories, as the infinite loop space of a certain Thom spectrum. One can investigate subcategories D of C having the property that the classifying-space BD is equivalent to BC, the smaller such D one can find the better.
We prove that in may cases of interest, D can be taken to be a homotopy commutative monoid. As a consequence, the stable cohomology of many moduli spaces of surfaces can be identified with that of the infinite loop space of certain Thom spectra.
14:15