Thu, 14 May 2009
17:00
L3

TBA

TBA
Thu, 30 Apr 2009
17:00
L3

Etale cohomology of difference schemes

Ivan Tomasic
Abstract

Difference schemes constitute important building blocks in the model-theoretic study of difference fields.

Our goal is to pursue their number-theoretic aspects much further than required by model theory.

Roughly speaking, a difference scheme (variety) is a scheme

(variety) with a distinguished endomorphism. We will explain how to extend the methods of etale cohomology to this context and, time permitting, we will show the calculation of difference etale cohomology in some interesting cases.

Tue, 26 May 2009

12:00 - 13:00
L3

Vortex Geometry

Nick Manton (DAMTP, Cambridge)
Mon, 08 Jun 2009
14:15
L3

$\pi$-convergence: The dynamics of isometries of Hadamard spaces on the boundary

Eric Swenson
(Brigham Young)
Abstract

It a classical result from Kleinian groups that a discrete group, $G$, of isometries of hyperbolic k-space $\Bbb H^k$ will act on the

boundary sphere, $S^{k-1}$, of $\Bbb H^k$ as a convergence group.

That is:

For every sequence of distinct isometries $(g_i)\subset G$ there is a subsequence ${g_i{_j})$ and points $n,p \in \S^{k-1}$ such that for $ x \in S^{k-1} -\{n\}$, $g_i_{j}(x) \to p$ uniformly on compact subsets

Mon, 01 Jun 2009
14:15
L3

Monoids of moduli spaces of manifolds

Oscar Randal-Williams
(Oxford)
Abstract

Joint work with Soren Galatius. We study categories C of d-dimensional cobordisms, from the perspective of Galatius, Madsen, Tillmann and Weiss. Their main result is the determination of the homotopy type of the classifying-space of such cobordism categories, as the infinite loop space of a certain Thom spectrum. One can investigate subcategories D of C having the property that the classifying-space BD is equivalent to BC, the smaller such D one can find the better.

We prove that in may cases of interest, D can be taken to be a homotopy commutative monoid. As a consequence, the stable cohomology of many moduli spaces of surfaces can be identified with that of the infinite loop space of certain Thom spectra.

Subscribe to L3