Mon, 27 Nov 2023

16:30 - 17:30
L3

Schoen's conjecture for limits of isoperimetric surfaces

Thomas Körber
(University of Vienna)
Abstract

R. Schoen has conjectured that an asymptotically flat Riemannian n-manifold (M,g) with non-negative scalar curvature is isometric to Euclidean space if it admits a non-compact area-minimizing hypersurface. This has been confirmed by O. Chodosh and M. Eichmair in the case where n=3. In this talk, I will present recent work with M. Eichmair where we confirm this conjecture in the case where 3<n<8 and the area-minimizing hypersurface arises as the limit of large isoperimetric hypersurfaces. By contrast, we show that a large part of spatial Schwarzschild of dimension 3<n<8 is foliated by non-compact area-minimizing hypersurfaces.

Mon, 30 Oct 2023

16:30 - 17:30
L3

Elasto-plasticity driven by dislocation movement

Filip Rindler
(University of Warwick)
Abstract

This talk presents some recent progress for models coupling large-strain, geometrically nonlinear elasto-plasticity with the movement of dislocations. In particular, a new geometric language is introduced that yields a natural mathematical framework for dislocation evolutions. In this approach, the fundamental notion is that of 2-dimensional "slip trajectories" in space-time (realized as integral 2-currents), and the dislocations at a given time are recovered via slicing. This modelling approach allows one to prove the existence of solutions to an evolutionary system describing a crystal undergoing large-strain elasto-plastic deformations, where the plastic part of the deformation is driven directly by the movement of dislocations. This is joint work with T. Hudson (Warwick).

Tue, 23 Jan 2024
13:00
L3

The Bethe-Gauge Correspondence for Superspin Chains

Faroogh Moosavian
(Oxford)
Abstract

The Bethe-Gauge Correspondence (BGC) of Nekrasov and Shatashvili, linking quantum integrable spin chains to two-dimensional supersymmetric gauge theories with N=2 supersymmetry, stands out as a significant instance of the deep connection between supersymmetric gauge theories and integrable models. In this talk, I will delve into this correspondence and its origins for superspin chains. To achieve this, I will first elucidate the Bethe Side and its corresponding Gauge Side of the BGC. Subsequently, it becomes evident that the BGC can be naturally realized within String Theory. I will initially outline the brane configuration for the realization of the Gauge Side. Through the use of string dualities, this brane configuration will be mapped to another, embodying the Bethe Side of the correspondence. The 4D Chern-Simons theory plays a crucial role in this latter duality frame, elucidating the integrability of the Bethe Side. Lastly, I will elaborate on computing the main object of interest for integrable superspin chains—the R-matrix—from the BGC. While this provides a rather comprehensive picture of the correspondence, some important questions remain for further clarification. I will summarize some of the most interesting ones at the end of the talk.


 

Tue, 05 Mar 2024
13:00
L3

Double scaled SYK and the quantum geometry of 3D de Sitter space

Herman Verlinde
(Princeton)
Abstract

In this talk, I describe an exact duality between the double scaling limit of the SYK model and quantum geometry of de Sitter spacetime in three dimensions. The duality maps the so-called chord rules that specify the exact SYK correlations functions to the skein relations that govern the topological interactions between world-line operators in 3D de Sitter gravity.

This talk is part of the series of Willis Lamb Lectures in Theoretical Physics. Herman Verlinde is the Lamb Lecturer of 2024.

Thu, 02 Nov 2023

12:00 - 13:00
L3

Coarsening of thin films with weak condensation

Hangjie Ji
(North Carolina State University)
Abstract

A lubrication model can be used to describe the dynamics of a weakly volatile viscous fluid layer on a hydrophobic substrate. Thin layers of the fluid are unstable to perturbations and break up into slowly evolving interacting droplets. In this talk, we will present a reduced-order dynamical system derived from the lubrication model based on the nearest-neighbour droplet interactions in the weak condensation limit. Dynamics for periodic arrays of identical drops and pairwise droplet interactions are investigated which provide insights to the coarsening dynamics of a large droplet system. Weak condensation is shown to be a singular perturbation, fundamentally changing the long-time coarsening dynamics for the droplets and the overall mass of the fluid in two additional regimes of long-time dynamics. This is joint work with Thomas Witelski.

Mon, 23 Oct 2023

16:30 - 17:30
L3

Graph Limit for Interacting Particle Systems on Weighted Random Graphs

Nastassia Pouradier Duteil
(Sorbonne Université)
Abstract

We study the large-population limit of interacting particle systems posed on weighted random graphs. In that aim, we introduce a general framework for the construction of weighted random graphs, generalizing the concept of graphons. We prove that as the number of particles tends to infinity, the finite-dimensional particle system converges in probability to the solution of a deterministic graph-limit equation, in which the graphon prescribing the interaction is given by the first moment of the weighted random graph law. We also study interacting particle systems posed on switching weighted random graphs, which are obtained by resetting the weighted random graph at regular time intervals. We show that these systems converge to the same graph-limit equation, in which the interaction is prescribed by a constant-in-time graphon.

Mon, 16 Oct 2023

16:30 - 17:30
L3

Plateau's problem via the theory of phase transitions

Stephen Lynch
(Imperial College London )
Abstract

Plateau's problem asks whether every boundary curve in 3-space is spanned by an area minimizing surface. Various interpretations of this problem have been solved using eg. geometric measure theory. Froehlich and Struwe proposed a PDE approach, in which the desired surface is produced using smooth sections of a twisted line bundle over the complement of the boundary curve. The idea is to consider sections of this bundle which minimize an analogue of the Allen--Cahn functional (a classical model for phase transition phenomena) and show that these concentrate energy on a solution of Plateau's problem. After some background on the link between phase transition models and minimal surfaces, I will describe new work with Marco Guaraco in which we produce smooth solutions of Plateau's problem using this approach. 

Fri, 10 Nov 2023

14:00 - 15:00
L3

Mathematical modelling identifies serum hepatitis B RNA as an informative biomarker of anti-viral treatment efficacy

Dr Tyler Cassidy
(School of Mathematics University of Leeds)
Abstract

Chronic hepatitis B virus (HBV) infection leads to liver damage that increases the risk of hepatocellular carcinoma and liver cirrhosis. Individuals with chronic HBV infection are often either treated with interferon alpha or nucleoside reverse transcriptase inhibitors (NTRL). While these NTRLs inhibit de novo DNA synthesis, they do not represent a functional cure for chronic HBV infection and so must be taken indefinitely. The resulting life-long treatment leads to an increased risk of selection for treatment resistant strains of HBV. Consequently, there is increased interest in a novel treatment modality, capsid protein allosteric modulators (CPAMs), that blocks a crucial step in the viral life cycle. I'll discuss recent work that identifies HBV serum RNA as an informative biomarker of CPAM treatment efficacy, evaluates CPAMs as a potential functional cure for HBV infection, and illustrates the role of mechanistic modelling in trial design using an age structured, multi-scale mathematical model. 

Fri, 03 Nov 2023

14:00 - 15:00
L3

Leader, follower, and cheater in collective cancer invasion

Professor Yi Jiang
(College of Arts and Science Georgia State University)
Abstract

A major reason for the failure of cancer treatment and disease progression is the heterogeneous composition of tumor cells at the genetic, epigenetic, and phenotypic levels. Despite extensive efforts to characterize the makeup of individual cells, there is still much to be learned about the interactions between heterogeneous cancer cells and between cancer cells and the microenvironment in the context of cancer invasion. Clinical studies and in vivo models have shown that cancer invasion predominantly occurs through collective invasion packs, which invade more aggressively and result in worse outcomes. In vitro experiments on non-small cell lung cancer spheroids have demonstrated that the invasion packs consist of leaders and followers who engage in mutualistic social interactions during collective invasion. Many fundamental questions remain unanswered: What is the division of labor within the heterogeneous invasion pack? How does the leader phenotype emerge? Are the phenotypes plastic? What's the role of the individual "cheaters"? How does the invasion pack interact with the stroma? Can the social interaction network be exploited to devise novel treatment strategies? I will discuss recent modeling efforts to address these questions and hope to convince you that identifying and perturbing the "weak links" within the social interaction network can disrupt collective invasion and potentially prevent the malignant progression of cancer. 

Fri, 27 Oct 2023

14:00 - 15:00
L3

Mathematical modelling throughout infectious disease outbreaks

Dr Robin Thompson
(Dept of Maths University of Oxford)
Abstract

Mathematical models are useful tools for guiding infectious disease outbreak control measures. Before a pathogen has even entered a host population, models can be used to determine the locations that are most at risk of outbreaks, allowing limited surveillance resources to be deployed effectively. Early in an outbreak, key questions for policy advisors include whether initial cases will lead on to a major epidemic or fade out as a minor outbreak. When a major epidemic is ongoing, models can be applied to track pathogen transmissibility and inform interventions. And towards the end of (or after) an outbreak, models can be used to estimate the probability that the outbreak is over and that no cases will be detected in future, with implications for when interventions can be lifted safely. In this talk, I will summarise the work done by my research group on modelling different stages of infectious disease outbreaks. This includes: i) Before an outbreak: Projections of the locations at-risk from vector-borne pathogens towards the end of the 21st century under a changing climate; ii) Early in an outbreak: Methods for estimating the risk that introduced cases will lead to a major epidemic; and iii) During a major epidemic: A novel approach for inferring the time-dependent reproduction number during outbreaks when disease incidence time series are aggregated temporally (e.g. weekly case numbers are reported rather than daily case numbers). In addition to discussing this work, I will suggest areas for further research that will allow effective interventions to be planned during future infectious disease outbreaks.

Subscribe to L3