Tue, 10 Jun 2008
14:30
L3

The Lee-Yang program and P\'olya-Schur theory

Julius Borcea
(Stockholm)
Abstract

Linear operators preserving non-vanishing properties are an important

tool in e.g. combinatorics, the Lee-Yang program on phase transitions, complex analysis, matrix theory. We characterize all linear operators on spaces of multivariate polynomials preserving the property of being non-vanishing when the variables are in prescribed open circular domains, which solves the higher dimensional counterpart of a long-standing classification problem going back to P\'olya-Schur. This also leads to a self-contained theory of multivariate stable polynomials and a natural framework for dealing with Lee-Yang and Heilmann-Lieb type problems in a uniform manner. The talk is based on joint work with Petter Brändén.

Tue, 27 May 2008
14:30
L3

“Cross-intersecting families of permutations and the Cameron-Ku conjecture"

David Ellis
(Cambridge)
Abstract

We call a family of permutations A in Sn 'intersecting' if any two permutations in A agree in at least one position. Deza and Frankl observed that an intersecting family of permutations has size at most (n-1)!; Cameron and Ku proved that equality is attained only by families of the form {σ in Sn: σ(i)=j} for i, j in [n].

We will sketch a proof of the following `stability' result: an intersecting family of permutations which has size at least (1-1/e + o(1))(n-1)! must be contained in {σ in Sn: σ(i)=j} for some i,j in [n]. This proves a conjecture of Cameron and Ku.

In order to tackle this we first use some representation theory and an eigenvalue argument to prove a conjecture of Leader concerning cross-intersecting families of permutations: if n >= 4 and A,B is a pair of cross-intersecting families in Sn, then |A||B|

Tue, 13 May 2008
12:00
L3

Existence of rough solutions to the Einstein constraint equations without CMC or near-CMC conditions

Michael Holst
(University of California, San Diego)
Abstract

> There is currently tremendous interest in geometric PDE, due in part
> to the geometric flow program used successfully to attack the Poincare
> and Geometrization Conjectures.  Geometric PDE also play a primary
> role in general relativity, where the (constrained) Einstein evolution
> equations describe the propagation of gravitational waves generated by
> collisions of massive objects such as black holes.
> The need to validate this geometric PDE model of gravity has led to
> the recent construction of (very expensive) gravitational wave
> detectors, such as the NSF-funded LIGO project.  In this lecture, we
> consider the non-dynamical subset of the Einstein equations called the
> Einstein constraints; this coupled nonlinear elliptic system must be
> solved numerically to produce initial data for gravitational wave
> simulations, and to enforce the constraints during dynamical
> simulations, as needed for LIGO and other gravitational wave modeling efforts.
>
> The Einstein constraint equations have been studied intensively for
> half a century; our focus in this lecture is on a thirty-year-old open
> question involving existence of solutions to the constraint equations
> on space-like hyper-surfaces with arbitrarily prescribed mean
> extrinsic curvature.  All known existence results have involved
> assuming either constant (CMC) or nearly-constant (near-CMC) mean
> extrinsic curvature.
> After giving a survey of known CMC and near-CMC results through 2007,
> we outline a new topological fixed-point framework that is
> fundamentally free of both CMC and near-CMC conditions, resting on the
> construction of "global barriers" for the Hamiltonian constraint.  We
> then present such a barrier construction for case of closed manifolds
> with positive Yamabe metrics, giving the first known existence results
> for arbitrarily prescribed mean extrinsic curvature.  Our results are
> developed in the setting of a ``weak'' background metric, which
> requires building up a set of preliminary results on general Sobolev
> classes and elliptic operators on manifold with weak metrics. 
> However, this allows us to recover the recent ``rough'' CMC existence
> results of Choquet-Bruhat
> (2004) and of Maxwell (2004-2006) as two distinct limiting cases of
> our non-CMC results.  Our non-CMC results also extend to other cases
> such as compact manifolds with boundary.
>
> Time permitting, we also outline some new abstract approximation
> theory results using the weak solution theory framework for the
> constraints; an application of which gives a convergence proof for
> adaptive finite element methods applied to the Hamiltonian constraint.

This is joint work with Gabriel Nagy and Gantumur Tsogtgerel.

 

Fri, 09 May 2008

15:15 - 16:15
L3

Slim Fields

Jochen Koenigsmann
(Oxford)
Mon, 09 Jun 2008

12:00 - 13:00
L3

`Exceptional' generalised geometry and superpotentials

Dan Waldram
(Imperial College)
Abstract
Abstract: We discuss an extension of Hitchin's generalised geometry, based on the exceptional groups, that provides a unified geometrical description of supersymmetric flux backgrounds in eleven-dimensional supergravity. We focus on N=1 seven-dimensional compactifications. The background is characterised by an element phi, the analogue of the generalised complex structure, that lies in a particular orbit of the 912 representation of E7. As an application we show that the four-dimensional effective superpotential takes a universal form, that is, a homogeneous E7-invariant functional of phi.
Mon, 26 May 2008

12:00 - 13:00
L3

Wall-crossing in two and four dimensions

Andy Neitzke
(IAS, Princeton)
Abstract
Abstract: Quantum field theories and string theories constructed from geometric data, say Calabi-Yau threefolds, are expected to provide integer "invariants". In many cases these "invariants" display a rather intricate wall-crossing behavior. I will discuss two examples -- one which was studied in the early 1990's by Cecotti-Vafa, and another currently under investigation by Kontsevich-Soibelman -- emphasizing the close physical and mathematical parallels between them.
Subscribe to L3