16:00
16:00
Metricity in projective geometry.
Abstract
Cover a plane with curves, one curve through each point
in each direction. How can you tell whether these curves are
the geodesics of some metric?
This problem gives rise to a certain closed system of partial
differential equations and hence to obstructions to finding such a
metric. It has been an open problem for at least 80 years. Surprisingly
it is harder in two dimensions than in higher dimensions. I shall present
a solution obtained jointly with Robert Bryant and Mike Eastwood.
12:00
Relativistic Figures of Equilibrium
Abstract
In this talk I shall review analytical and numerical results on equilibrium configurations of rotating fluid bodies within Einstein's theory of gravitation.
12:00
Nonlinear spherical sound waves at the surface of a perfect fluid star
Abstract
Current numerical relativity codes model neutron star matter as a perfect fluid, with an unphysical "atmosphere" surrounding the star to avoid the breakdown of the equations at the fluid-vacuum interface at the surface of the star. To design numerical methods that do not require an unphysical atmosphere, it is useful to know what a generic sound wave looks near the surface. After a review of relevant mathematical methods, I will present results for low (finite) amplitude waves that remain smooth and, perhaps, for high amplitude waves that form a shock.