14:15
Non Archimedian Geometry and Model Theory
Abstract
We shall present work in progress in collaboration with E. Hrushovski on the geometry of spaces of stably dominated types in connection with non archimedean geometry \`a la Berkovich
We shall present work in progress in collaboration with E. Hrushovski on the geometry of spaces of stably dominated types in connection with non archimedean geometry \`a la Berkovich
There is a well-behaving class of dense ordered abelian groups called "regularly dense ordered abelian groups". This first order property of ordered abelian groups is introduced by Robinson and Zakon as a generalization of being an archimedean ordered group. Every dense subgroup of the additive group of reals is regularly dense. In this talk we consider subgroups of the multiplicative group, S, of all complex numbers of modulus 1. Such groups are not ordered, however they have an "orientation" on them: this is a certain ternary relation on them that is invariant under multiplication. We have a natural correspondence between oriented abelian groups, on one side, and ordered abelian groups satisfying a cofinality condition with respect to a distinguished positive element 1, on the other side. This correspondence preserves model-theoretic relations like elementary equivalence. Then we shall introduce a first-order notion of "regularly dense" oriented abelian group; all infinite subgroups of S are regularly dense in their induced orientation. Finally we shall consider the model theoretic structure (R,Gamma), where R is the field of real numbers, and Gamma is dense subgroup of S satisfying the Mann property, interpreted as a subset of R^2. We shall determine the elementary theory of this structure.
One knows, for example by proving well-posedness for an initial value problem with data at the singularity, that there exist many cosmological solutions of the Einstein equations with an initial curvature singularity but for which the conformal metric can be extended through the singularity. Here we consider a converse, a local extension problem for the conformal structure: given an incomplete causal curve terminating at a curvature singularity, when can one extend the conformal structure to a set containing a neighbourhood of a final segment of the curve?
We obtain necessary and sufficient conditions based on boundedness of tractor curvature components. (Based on work with Christian Luebbe: arXiv:0710.5552, arXiv:0710.5723.)
The complement of a knot or link is a 3-manifold which admits a geometric
structure. However, given a diagram of a knot or link, it seems to be a
difficult problem to determine geometric information about the link
complement. The volume is one piece of geometric information. For large
classes of knots and links with complement admitting a hyperbolic
structure, we show the volume of the link complement is bounded by the
number of twist regions of a diagram. We prove this result for a large
collection of knots and links using a theorem that estimates the change in
volume under Dehn filling. This is joint work with Effie Kalfagianni and
David Futer
This is the second of two talks, and probably will not be comprehensible unless you came to last week's talk.
A Kuranishi space is a topological space equipped with a Kuranishi structure, defined by Fukaya and Ono. Kuranishi structures occur naturally on many moduli spaces in differential geometry, and in particular, in moduli spaces of stable $J$-holomorphic curves in symplectic geometry.
Let $Y$ be an orbifold, and $R$ a commutative ring. We define four topological invariants of $Y$: two kinds of Kuranishi bordism ring $KB_*(Y;R)$, and two kinds of Kuranishi homology ring $KH_*(Y;R)$. Roughly speaking, they are spanned over $R$ by isomorphism classes $[X,f]$ with various choices of relations, where $X$ is a compact oriented Kuranishi space, which is without boundary for bordism and with boundary and corners for homology, and $f:X\rightarrow Y$ is a strong submersion. These theories are powerful tools in symplectic geometry.
Today we discuss the definition of Kuranishi homology, and the proof that weak Kuranishi homology is isomorphic to the singular homology.
A Kuranishi space is a topological space equipped with a Kuranishi structure, defined by Fukaya and Ono. Kuranishi structures occur naturally on many moduli spaces in differential geometry, and in particular, in moduli spaces of stable $J$-holomorphic curves in symplectic geometry.
Let $Y$ be an orbifold, and $R$ a commutative ring. We shall define four topological invariants of $Y$: two kinds of Kuranishi bordism ring $KB_*(Y;R)$, and two kinds of Kuranishi homology ring $KH_*(Y;R)$. Roughly speaking, they are spanned over $R$ by isomorphism classes $[X,f]$ with various choices of relations, where $X$ is a compact oriented Kuranishi space, which is without boundary for bordism and with boundary and corners for homology, and $f:X\rightarrow Y$ is a strong submersion. Our main result is that weak Kuranishi homology is isomorphic to the singular homology of $Y$.
These theories are powerful tools in symplectic geometry for several reasons. Firstly, using them eliminates the issues of virtual cycles and perturbation of moduli spaces, yielding technical simplifications. Secondly, as $KB_*,KH_*(Y;R)$ are very large, invariants defined in these groups contain more information than invariants in conventional homology. Thirdly, we can define Gromov-Witten type invariants in Kuranishi bordism or homology groups over $\mathbb Z$, not just $\mathbb Q$, so they can be used to study the integrality properties of Gromov-Witten invariants.
This is the first of two talks. Today we deal with motivation from symplectic geometry, and Kuranishi bordism. Next week's talk discusses Kuranishi homology.