Mon, 05 Nov 2007
14:45
L3

Asymptotics of the cell decomposition of Teichmueller space

Bob Penner
(USC and Aarhus)
Abstract
Recent joint work with Greg McShane has answered the following question: Which curves can be short in a given cell of the decomposition of Teichmueller space? The answer involves a new combinatorial structure called "screens on fatgraphs" as we shall describe. The techniques of proof involve Fock's path-ordered product expansion of holonomies, Ptolemy transformations, and the triangle inequalities. This is a main step in giving a combinatorial description of the Deligne-Mumford compactification of moduli space which we shall also discuss as time permits.
Mon, 15 Oct 2007
15:45
L3

Operads revisited

Ezra Getzler
(Nortwestern and Imperial)
Abstract
I will present a general formalism for understanding coloured operads of different flavours, such as cyclic operads, modular operads and topological field theories. The talk is based on arXiv:math/0701767.
Mon, 08 Oct 2007
15:45
L3

Quasiregular maps, hyperbolic groups, and rigidity of manifolds

Martin Bridson
(Oxford)
Abstract
Roughly speaking, a quasiregular map is a possibly-branched covering map with bounded distortion. The theory of such maps was developed in the 1970s to carry over to higher dimensions the more geometric aspects of the theory of complex analytic functions of the plane. In this talk I shall outline the proof of rigidity theorems describing the quasiregular self-maps of hyperbolic manifolds. These results rely on an extension of Sela's work concerning the stability of self-maps of hyperbolic groups, and on older topological ideas concerning discrete-open and light-open maps, particularly their effect on fundamental groups. I shall explain how these two sets of ideas also lead to topological rigidity theorems. This talk is based on a paper with a similar title by Bridson, Hinkkanen and Martin (to appear in Compositio shortly). http://www2.maths.ox.ac.uk/~bridson/papers/QRhyp/
Mon, 26 Nov 2007

11:00 - 12:00
L3

An algorithmic approach to heterotic compactification

Lara Anderson (Oxford)
Abstract
Abstract: In this talk, I will describe recent work in string phenomenology from the perspective of computational algebraic geometry. I will begin by reviewing some of the long-standing issues in heterotic model building and describe the difficult task of producing realistic particle physics from heterotic string theory. This goal can be approached by creating a large class of heterotic models which can be algorithmically scanned for physical suitability. I will outline a well-defined set of heterotic compactifications over complete intersection Calabi-Yau manifolds using the monad construction of vector bundles. Further, I will describe how a combination of analytic methods and computer algebra can provide efficient techniques for proving stability and calculating particle spectra.
Mon, 19 Nov 2007

11:00 - 12:00
L3

Hedgehog black holes and the deconfinement transition

Matt Headrick
(Stanford University)
Abstract
Abstract: The deconfinement transition in gauge theories, in which the Polyakov loop acquires a non-zero expectation value, is described in AdS/CFT as the formation of a black hole in the dual graviational theory. We will explain how to compute the free energy diagram for the Polyakov loop by a constrained gravitational path integral, leading to a new class of black hole solutions.
Mon, 12 Nov 2007

11:00 - 12:00
L3

AdS/CFT and Geometry

James Sparks
(Oxford)
Abstract
Abstract: I will give an introduction to, and overview of, the AdS/CFT correspondence from a geometric perspective. As I hope to explain, the correspondence leads to some remarkable relationships between string theory, conformal field theory, algebraic geometry, differential geometry and combinatorics.
Mon, 29 Oct 2007

11:00 - 12:00
L3

What is Twistor-String Theory

Lionel Mason
(Oxford)
Abstract
Abstract: Twistor-string theory is reformulated as a `half-twisted heterotic' theory with target $CP^3$. This in effect gives a Dolbeault formulation of a theory of holomorphic curves in twistor space and gives a clearer picture of the mathematical structures underlying the theory and how they arise from the original Witten and Berkovits models. It is also explained how space-time physics arises from the model. It intended that the lecture be, to a certain extent, pedagogical.
Wed, 24 Oct 2007

12:00 - 13:00
L3

<strong>(Note unusual day)</strong> Bows and Quivers: Instantons on ALF Spaces

Sergey Cherkis
(Trinity College Dublin)
Abstract
Abstract: Self-dual connections on ALF spaces can be encoded in terms of bow diagrams, which are natural generalizations of quivers. This provides a convenient description of the moduli spaces of these self-dual connections. We make some comments about the associated twistor data. Via the Nahm transform we construct two explicit examples: a single instanton and a single monopole on a Taub-NUT space.
Subscribe to L3