Fri, 22 Oct 2021

14:00 - 15:00
L3

Programmable genome regulation for studying quantitative genomics and developing high-precision therapy

Prof Stanley Qi
(Departments of Bioengineering and Chemical and Systems Biology Stanford University)
Abstract

Manipulation of the genome function is important for understanding the underlying genetics for sophisticated phenotypes and developing gene therapy. Beyond gene editing, there is a major need for high-precision and quantitative technologies that allow controlling and studying gene expression and epigenetics in the genome. Towards this goal, we develop the concept and technologies for the use of the nuclease-deactivated CRISPR-Cas (dCas) system, repurposed from the Cas nuclease, for programmable transcription regulation, epigenetic modifications, and the 3D genome organization. We combine genome engineering and mathematical modeling to understand the noncoding DNA function including ultralong-distance enhancers and repetitive elements. We actively explore new tools that allow precise manipulation of the large-scale chromatin as a novel gene therapy. In this talk, I will highlight our works at the interface between genome engineering and chromatin biology for studying the noncoding genome and related applications.

Mon, 09 Mar 2020
12:45
L3

Bottom-up construction of 4d N=2 SCFTs

Carlo Meneghelli
(Oxford)
Abstract

In this talk, I will argue how the observation that four-dimensional N=2 superconformal field theories are interconnected via the operation of Higgsing can be turned into an effective method to construct such SCFTs. A fundamental role is played by the (generalized) free field realization of the associated VOAs.

Fri, 28 Feb 2020

10:00 - 11:00
L3

Compressed Sensing or common sense?

Christopher Townsend
(Leonardo)
Abstract

We present a simple algorithm that successfully re-constructs a sine wave, sampled vastly below the Nyquist rate, but with sampling time intervals having small random perturbations. We show how the fact that it works is just common sense, but then go on to discuss how the procedure relates to Compressed Sensing. It is not exactly Compressed Sensing as traditionally stated because the sampling transformation is not linear.  Some published results do exist that cover non-linear sampling transformations, but we would like a better understanding as to what extent the relevant CS properties (of reconstruction up to probability) are known in certain relatively simple but non-linear cases that could be relevant to industrial applications.

Mon, 17 Feb 2020
12:45
L3

Rademacher Expansions and the Spectrum of 2d CFT

Jinbeom Bae
(Oxford)
Abstract


I will describe work exploring the spectrum of two-dimensional unitary conformal field theories(CFT) with no extended chiral algebra and central charge larger than one. I will revisit a classical result from analytic number theory by Rademacher, which provides an exact formula for the Fourier coefficients of modular forms of non-positive weight. Generalizing this, I will explain how we employed Rademacher's idea to study the spectral density of two-dimensional CFT of our interest. The expression is given in terms of a Rademacher expansion, which converges for nonzero spin. The implications of our spectral density to the pure gravity in AdS3 will be discussed.

Fri, 28 Feb 2020

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Oliver Bond, Ana Osojnik, Scott Marquis, John Fitzgerald
(Mathematical Institute)
Fri, 31 Jan 2020

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Federico Danieli, Ambrose Yim, Zhen Shao, TBA
(Mathematical Institute)
Mon, 24 Feb 2020
12:45
L3

Quantizing superstrings in AdS/CFT, perturbatively and beyond

Valentina Forini
(City University London)
Abstract

String sigma-models relevant in the AdS/CFT correspondence are highly non-trivial two-dimensional field theories for which predictions at finite coupling exist, assuming integrability and/or the duality itself.  I will discuss general features of the perturbative approach to these models, and present progress on how to go extract finite coupling information in the most possibly general way, namely via the use of lattice field theory techniques. I will also present new results on certain ``defect-CFT’' correlators  at strong coupling. 

Mon, 09 Mar 2020

14:15 - 15:15
L3

Hydrodynamic limit for a facilitated exclusion process

MARIELLE SIMON
(INRIA LILLE)
Abstract


During this talk we will be interested in a one-dimensional exclusion process subject to strong kinetic constraints, which belongs to the class of cooperative kinetically constrained lattice gases. More precisely, its stochastic short range interaction exhibits a continuous phase transition to an absorbing state at a critical value of the particle density. We will see that the macroscopic behavior of this microscopic dynamics, under periodic boundary conditions and diffusive time scaling, is ruled by a non-linear PDE belonging to free boundary problems (or Stefan problems). One of the ingredients is to show that the system typically reaches an ergodic component in subdiffusive time.

Based on joint works with O. Blondel, C. Erignoux and M. Sasada

Mon, 09 Mar 2020

15:45 - 16:45
L3

Infinite limit of (fully connected) neural networks: Gaussian processes and kernel methods.

FRANCK GABRIEL
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract

In practice, it is standard to initialize Artificial Neural Networks (ANN) with random parameters. We will see that this allows to describe, in the functional space, the limit of the evolution of (fully connected) ANN when their width tends towards infinity. Within this limit, an ANN is initially a Gaussian process and follows, during learning, a gradient descent convoluted by a kernel called the Neural Tangent Kernel. 

This description allows a better understanding of the convergence properties of neural networks, of how they generalize to examples during learning and has 

practical implications on the training of wide ANNs. 

Mon, 17 Feb 2020

14:15 - 15:15
L3

New Results on Continuously Expanding a Filtration

PHILIP PROTTER
(Columbia University)
Abstract

We "review" how one can expand a filtration by continuously adding a stochastic process. The new results (obtained with Léo Neufcourt) relate to the seimartingale decompositions after the expansion. We give some possible applications. 

Subscribe to L3