Fri, 25 May 2018

14:00 - 15:00
L3

Delay differential equations with threshold-type delays

Professor Stephen Gourley
(Dept of Mathematics University of Surrey)
Abstract

I will discuss some properties of delay differential equations in which the delay is not prescribed a-priori but is determined from a threshold condition. Sometimes the delay depends on the solution of the differential equation and its history. A scenario giving rise to a threshold type delay is that larval insects sometimes experience halting or slowing down of development, known as diapause, perhaps as a consequence of intra-specific competition among larvae at higher densities. Threshold delays can result in population dynamical models having some unusual properties, for example, if the model has an Allee effect then diapause may cause extinction in some parameter regimes even where the initial population is high.

Please  note that this talk is only suitable for Mathematicians.

Fri, 11 May 2018

14:00 - 15:00
L3

Intracellular coordination of microswimming by flagella

Dr Kirsty Wan
(Living Systems Institute University of Exeter)
Abstract

Since the invention of the microscope, scientists have known that pond-dwelling algae can actually swim – powering their way through the fluid using tiny limbs called cilia and flagella. Only recently has it become clear that the very same structure drives important physiological and developmental processes within the human body. Motivated by this connection, we explore flagella-mediated swimming gaits and stereotyped behaviours in diverse species of algae, revealing the extent to which control of motility is driven intracellularly. These insights suggest that the capacity for fast transduction of signal to peripheral appendages may have evolved far earlier than previously thought.

Fri, 04 May 2018

14:00 - 15:00
L3

Computing reliably with molecular walkers

Professor Marta Kwiatkowska
(Dept of Computer Science University of Oxford)
Abstract

DNA computing is emerging as a versatile technology that promises a vast range of applications, including biosensing, drug delivery and synthetic biology. DNA logic circuits can be achieved in solution using strand displacement reactions, or by decision-making molecular robots-so called 'walkers'-that traverse tracks placed on DNA 'origami' tiles.

 Similarly to conventional silicon technologies, ensuring fault-free DNA circuit designs is challenging, with the difficulty compounded by the inherent unreliability of the DNA technology and lack of scientific understanding. This lecture will give an overview of computational models that capture DNA walker computation and demonstrate the role of quantitative verification and synthesis in ensuring the reliability of such systems. Future research challenges will also be discussed.

Fri, 27 Apr 2018

14:00 - 15:00
L3

Revisiting Jeffery orbits; the importance of shape for micro-organism transport

Dr Rachel Bearon
(Dept of Mathematical Sciences University of Liverpool)
Abstract

Classical work of Jeffery from 1922 established how at low Reynolds number, ellipsoids in steady shear flow undergo periodic motion with non-uniform rotation rate, termed 'Jeffery orbits'.  I will present two problems where Jeffery orbits play a critical role in understanding the transport and aggregation of rod-shaped organisms.  I will discuss the trapping of motile chemotactic bacteria in high shear, and the sedimentation rate of negatively buoyant plankton. 

Tue, 15 May 2018

16:00 - 17:00
L3

Euclid's Elements of Geometry in Early Modern Britain

Yelda Nasifoglu
(History Faculty)
Abstract

Part of the series 'What do historians of mathematics do?'

Both as a canonical mathematical text and as a representative of ancient thought, Euclid's Elements of Geometry has been a subject of study since its creation c. 300 BCE. It has been read as a practical and a theoretical text; it has been studied for its philosophical ramifications and for its perceived potential to inculcate logical thought. For the historian, it is where the history of mathematics meets the history of ideas; where the history of the book meets the history of practice. The study of the Elements enjoyed a particular resurgence during the Early Modern period, when around 200 editions of the text appeared between 1482 and 1700.  Depending on their theoretical and practical functions, they ranged between elaborate folios and pocket-size compendia, and were widely studied by scholars, natural philosophers, mathematical practitioners, and schoolchildren alike.

In this talk, I will present some of the preliminary results of the research we have been conducting for the AHRC-funded project based at the History Faculty 'Reading Euclid: Euclid's Elements of Geometry in Early Modern Britain', paying particular attention to how the books were printed, collected, and annotated. I will concentrate on our methodologies and introduce the database we have been building of all the early modern copies of the text in the British Isles, as well as the 'catalogue of book catalogues'.

Tue, 08 May 2018

16:00 - 17:00
L3

“Perseverance and intelligence, but no genius”: Mary Somerville's theory of differences

Brigitte Stenhouse
(The Open University)
Abstract

Part of the series 'What do historians of mathematics do?'

In 1873 the Personal Recollections from Early Life to Old Age of Mary Somerville were published, containing detailed descriptions of her life as a 19th century philosopher, mathematician and advocate of women's rights. In an early draft of this work, Somerville reiterated the widely held view that a fundamental difference between men and women was the latter's lack of originality, or 'genius'.

In my talk I will examine how Somerville's view was influenced by the historic treatment of women, both within scientific research, scientific institutions and wider society. By building on my doctoral research I will also suggest an alternative viewpoint in which her work in the differential calculus can be seen as original, with a focus on her 1834 treatise On the Theory of Differences.

Tue, 01 May 2018

16:00 - 17:00
L3

“The World Is Round. Or, Is It, Really?” A Global History of Mathematics in the 17th Century

Tomoko L. Kitagawa
(UC Berkeley & Oxford Centre for Global History)
Abstract

Part of the series 'What do historians of mathematics do?'

In this talk, we will survey the movement of mathematical ideas in the 17th century. We will explore, in particular, the mathematical cultures of Paris, Amsterdam, Rome, Cape Town, Goa, Kyoto, Beijing, and London, as well as the journey of mathematical knowledge on a global scale. As it will be an ambitious task to complete a round-the-world history tour in an hour, the focus will be on East Asia. By employing the digital humanities technique, this presentation will use digital media to effectively show historical sources and help the audience imagine the world as a “round” entity when we discuss a global history of mathematics.

Thu, 10 May 2018

16:00 - 17:30
L3

From maps to apps: the power of machine learning and artificial intelligence for regulators

Stefan Hunt
(Financial Conduct Authority)
Abstract

Abstract:
Highlights:

•We increasingly live in a digital world and commercial companies are not the only beneficiaries. The public sector can also use data to tackle pressing issues.
•Machine learning is starting to make an impact on the tools regulators use, for spotting the bad guys, for estimating demand, and for tackling many other problems.
•The speech uses an array of examples to argue that much regulation is ultimately about recognising patterns in data. Machine learning helps us find those patterns.
 
Just as moving from paper maps to smartphone apps can make us better navigators, Stefan’s speech explains how the move from using traditional analysis to using machine learning can make us better regulators.
 
Mini Biography:
 
Stefan Hunt is the founder and Head of the Behavioural Economics and Data Science Unit. He has led the FCA’s use of these two fields and designed several pioneering economic analyses. He is an Honorary Professor at the University of Nottingham and has a PhD in economics from Harvard University.
 

Fri, 02 Mar 2018

12:00 - 13:15
L3

Stability of Minkowski space and asymptotics of the metric

Peter Hintz
(UC Berkeley and CMI)
Abstract

I will explain a new proof of the non-linear stability of the Minkowski spacetime as a solution of the Einstein vacuum equation. The proof relies on an iteration scheme at each step of which one solves a linear wave-type equation globally. The analysis takes place on a suitable compactification of $\mathbb{R}^4$ to a manifold with corners whose boundary hypersurfaces correspond to spacelike, null, and timelike infinity; I will describe how the asymptotic behavior of the metric can be deduced from the structure of simple model operators at these boundaries. This talk is based on joint work with András Vasy.

Subscribe to L3