Thu, 25 Feb 2016

16:00 - 17:00
L3

Acrobatics of Liquid Ropes

Neil Ribe
(CNRS and Universite Paris-Sud)
Abstract

Honey poured from a sufficient height onto toast undergoes the well-known `liquid rope coiling’ instability.

We have studied this instability using a combination of laboratory experiments, theory, and numerics, with the aim of determining phase diagrams and scaling laws for the different coiling modes. Finite-amplitude coiling has four distinct modes - viscous, gravitational, inertio-gravitational, and inertial - depending on how the viscous forces that resist deformation of the rope are balanced. The inertio-gravitational mode is particularly interesting as it involves resonance between the coiling portion of the rope and its long trailing `tail’. Further experiments using less viscous fluids reveal that the rope can exhibit five different morphologies, of which steady coiling is only one. We determine the detailed phase diagram of these morphologies, which includes a novel `liquid supercoiling’

state in which the coiled cylinder formed by the primary coiling instability undergoes in turn its own complex buckling instability.  We show that the onset of these different patterns is determined by a non-penetrability condition which takes different forms in the viscous, gravitational and inertial limits. To close, we will briefly evoke two additional related phenomena: spiral waves of bubbles generated by coiling, and the `fluid mechanical sewing machine’ in which the fluid falls onto a moving belt.

Thu, 18 Feb 2016

16:00 - 17:00
L3

Interactions of noise and discontinuities: transitions and qualitative changes

Rachel Kuske
(University of British Colombia)
Abstract

While there have been recent advances for analyzing the complex deterministic
behavior of systems with discontinuous dynamics, there are many open questions about
understanding and predicting noise-driven and noise-sensitive phenomena in the
non-smooth context.  Stochastic effects can often change the picture dramatically,
particularly if multiple time scales are present.  We demonstrate novel approaches
for exploring and explaining surprising phenomena driven by the interplay of
nonlinearities, delays, randomness, in specific applications with piecewise smooth
dynamics - nonlinear models of balance,  relay control, and impacting dynamics.
Effective techniques typically depend on the combination of mathematical techniques,
multiple scales techniques, and phenomenological intuition from seemingly unrelated
canonical models of biophysics, mechanics, and chemical dynamics.  The appropriate
strategy is not always immediately obvious from the area of application or model
type. This gap may follow from the limited attention that stochastic models with
discontinuous dynamics have received in the past, or it may be the reason for this
limited attention.  Combining the geometrical perspective with asymptotic approaches
in physical and phase space appears to be a critical part of developing effective
approaches.

Thu, 11 Feb 2016

16:00 - 17:00
L3

Wave-particle coupling in fluid mechanics: bouncing droplets and flapping swimmers

Anand Oza
Abstract
Roughly a decade ago, Yves Couder and coworkers demonstrated that droplets walking on a vibrating fluid bath exhibit several features previously thought to be peculiar to the microscopic quantum realm, including single-particle diffraction, tunneling, quantized orbits, and wave-like statistics in a corral. We here develop an integro-differential trajectory equation for these walking droplets with a view to gaining insight into their subtle dynamics. We then rationalize the emergence of orbital quantization in a rotating frame by assessing the stability of the orbital solutions. In the limit of large vibrational forcing, the chaotic walker dynamics gives rise to a coherent statistical behavior with wave-like features.
 
I will then describe recent efforts to model the dynamics of interacting flapping swimmers. Our study is motivated by recent experiments using a one-dimensional array of wings in a water tank, in which the system adopts “schooling modes” characterized by specific spatial phase relationships between swimmers. We develop a discrete dynamical system that models the swimmers as airfoils shedding point vortices, and study the existence and stability of steady solutions. We expect that our model may be used to understand how schooling behavior is influenced by hydrodynamics in more general contexts.
 
Thu, 04 Feb 2016

16:00 - 17:00
L3

Group Meeting

Barbara Mahler, Thomas Woolley, Julian A. Garcia Grajales
Abstract

Barbara Mahler: 15+5 min

Thomas Woolley: 15+5 min

Julian A. Garcia Grajales: 15+5 min
 

Thu, 28 Jan 2016

16:00 - 17:00
L3

Predictive simulations for optimisation of inhaled drug delivery

Laura Nicolaou
(ICL)
Abstract

Respiratory illnesses, such as asthma and chronic obstructive pulmonary disease, account for one in five deaths worldwide and cost the UK over £6 billion a year. The main form of treatment is via inhaled drug delivery. Typically, however, a low fraction of the inhaled dose reaches the target areas in the lung. Predictive numerical capabilities have the potential for significant impact in the optimisation of pulmonary drug delivery. However, accurate and efficient prediction is challenging due to the complexity of the airway geometries and of the flow in the airways. In addition, geometric variation of the airways across subjects has a pronounced effect on the aerosol deposition. Therefore, an accurate model of respiratory deposition remains a challenge.

High-fidelity simulations of the flow field and prediction of the deposition patterns motivate the use of direct numerical simulations (DNS) in order to resolve the flow. Due to the high grid resolution requirements, it is desirable to adopt an efficient computational strategy. We employ a robust immersed boundary method developed for curvilinear coordinates, which allows the use of structured grids to model the complex patient-specific airways, and can accommodate the inter-subject geometric variations on the same grid. The proposed approach reduces the errors at the boundary and retains the stability guarantees of the original flow solver.

A Lagrangian particle tracking scheme is adopted to model the transport of aerosol particles. In order to characterise deposition, we propose the use of an instantaneous Stokes number based on the local properties of the flow field. The effective Stokes number is then defined as the time-average of the instantaneous value. This effective Stokes number thus encapsulates the flow history and geometric variability. Our results demonstrate that the effective Stokes number can deviate significantly from the reference value based solely on a characteristic flow velocity and length scale. In addition, the effective Stokes number shows a clear correlation with deposition efficiency.

Mon, 18 May 2015
11:00
L3

Commutativity and Collinearity: From Diophantus to Pappus via Hilbert

Adrian Rice
Abstract

This talk investigates the discovery of an intriguing and fundamental connection between the famous but apparently unrelated work of two mathematicians of late antiquity, Pappus and Diophantus. This link went unnoticed for well over 1500 years until the publication of two groundbreaking but again ostensibly unrelated works by two German mathematicians at the close of the 19th century. In the interim, mathematics changed out of all recognition, with the creation of numerous new mathematical subjects and disciplines, without which the connection might never have been noticed in the first place. This talk examines the chain of mathematical events that led to the discovery of this remarkable link between two seemingly distinct areas of mathematics, encompassing number theory, finite-dimensional real normed algebras, combinatorial design theory, and projective geometry, and including contributions from mathematicians of all kinds, from the most distinguished to the relatively unknown.

Adrian Rice is Professor of Mathematics at Randolph-Macon College in Ashland, Virginia, where his research focuses on the history of 19th- and early 20th-century mathematics. He is a three-time recipient of the Mathematical Association of America's awards for outstanding expository writing.

Thu, 26 Nov 2015

16:00 - 17:00
L3

Attributes and Artifacts of Network Optimization

Adilson E Motter
(Northwestern University, USA)
Abstract

Much of the recent interest in complex networks has been driven by the prospect that network optimization will help us understand the workings of evolutionary pressure in natural systems and the design of efficient engineered systems.  In this talk, I will reflect on unanticipated attributes and artifacts in three classes of network optimization problems. First, I will discuss implications of optimization for the metabolic activity of living cells and its role in giving rise to the recently discovered phenomenon of synthetic rescues. Then I will comment on the problem of controlling network dynamics and show that theoretical results on optimizing the number of driver nodes/variables often only offer a conservative lower bound to the number actually needed in practice. Finally, I will discuss the sensitive dependence of network dynamics on network structure that emerges in the optimization of network topology for dynamical processes governed by eigenvalue spectra, such as synchronization and consensus processes.  Optimization is a double-edged sword for which desired and adverse effects can be exacerbated in complex network systems due to the high dimensionality of their dynamics.

Thu, 19 Nov 2015

16:00 - 17:00
L3

OCIAM Group Meeting - New singularities for Stokes waves

Robert Style, Samuel Crew and Phil Trinh
(Oxford University)
Abstract
New singularities for Stokes waves
Samuel Crew (Lincoln College) and Philippe Trinh
 
In 1880, Stokes famously demonstrated that the singularity that occurs at the crest of the steepest possible water wave in infinite depth must correspond to a corner of 120°. Here, the complex velocity scales like the one-third power of the complex potential. Later in 1973, Grant showed that for any wave away from the steepest configuration, the singularity moves into the complex plane, and is instead of order one-half. Grant conjectured that as the highest wave is approached, other singularities must coalesce at the crest so as to cancel the square-root behaviour. Even today, it is not well understood how this process occurs, nor is it known what other singularities may exist. 
 
In this talk, we shall explain how we have been able to construct the Riemann surface that represents the extension of the water wave into the complex plane. We shall also demonstrate the existence of a countably infinite number of singularities, never before noted, which coalesce as Stokes' highest wave is approached. Our results demonstrate that the singularity structure of a finite amplitude wave is much more complicated than previously anticipated, 
 
Thu, 29 Oct 2015

16:00 - 17:00
L3

Group Meeting

Michael Gomez, Jake Taylor-King, Andrew Krause, Zach Wilmott
Abstract

Michael Gomez:

Title: The role of ghosts in elastic snap-through
Abstract: Elastic `snap-through' buckling is a striking instability of many elastic systems with natural curvature and bistable states. The conditions under which bistability exists have been reasonably well studied, not least because a number of engineering applications make use of the rapid transitions between states. However, the dynamics of the transition itself remains much less well understood. Several examples have been studied that show slower dynamics than would be expected based on purely elastic timescales of motion, with the natural conclusion drawn that some other effect, such as viscoelasticity, must play a role. I will present analysis (and hopefully experiments) of a purely elastic system that shows similar `anomalous dynamics'; however, we show that here this dynamics is a consequence of the ‘ghost’ of the snap-through bifurcation.

Andrew Krause:

Title: Fluid-Growth Interactions in Bioactive Porous Media   
Abstract: Recent models in Tissue Engineering have considered pore blocking by cells in a porous tissue scaffold, as well as fluid shear effects on cell growth. We implement a suite of models to better understand these interactions between cell growth and fluid flow in an active porous medium. We modify some existing models in the literature that are spatially continuous (e.g. Darcy's law with a cell density dependent porosity). However, this type of model is based on assumptions that we argue are not good at describing geometric and topological properties of a heterogeneous pore network, and show how such a network can emerge in this system. Therefore we propose a different modelling paradigm to directly describe the mesoscopic pore networks of a tissue scaffold. We investigate a deterministic network model that can reproduce behaviour of the continuum models found in the literature, but can also exhibit finite-scale effects of the pore network. We also consider simpler stochastic models which compare well with near-critical Percolation behaviour, and show how this kind of behaviour can arise from our deterministic network model.

Jake Taylor-King
Title:A Kinetic Approach to Evolving Spatial Networks, with an Application to Osteocyte Network Formation 
Abstract:We study an evolving network where the nodes are considered as represent particles with a corresponding state vector. Edges between nodes are created and destroyed as a Poisson process, and new nodes enter the system. We define the concept of a “local state degree distribution” (LSDD) as a degree distribution that is local to a particular point in phase space. We then derive a differential equation that is satisfied approximately by the LSDD under a mean field assumption; this allows us to calculate the degree distribution. We examine the validity of our derived differential equation using numerical simulations, and we find a close match in LSDD when comparing theory and simulation. Using the differential equation derived, we also propose a continuum model for osteocyte network formation within bone. The structure of this network has implications regarding bone quality. Furthermore, osteocyte network structure can be disrupted within cancerous microenvironments. Evidence suggests that cancerous osteocyte networks either have dendritic overgrowth or underdeveloped dendrites. This model allows us to probe the density and degree distribution of the dendritic network. We consider a traveling wave solution of the osteocyte LSDD profile which is of relevance to osteoblastic bone cancer (which induces net bone formation). We then hypothesise that increased rates of differentiation would lead to higher densities of osteocytes but with a lower quantity of dendrites. 
 
 

 

 

 

Thu, 05 Nov 2015

16:00 - 17:00
L3

Acoustic liners in aircraft engines

Ed Brambley
(Cambridge)
Abstract

Noise limits are one of the major constraints when designing
aircraft engines.  Acoustic liners are fitted in almost all civilian
turbofan engine intakes, and are being considered for use elsewhere in a
bid to further reduce noise.  Despite this, models for acoustic liners
in flow have been rather poor until recently, with discrepancies of 10dB
or more.  This talk will show why, and what is being done to model them
better.  In the process, as well as mathematical modelling using
asymptotics, we will show that state of the art Computational
AeroAcoustics simulations leave a lot to be desired, particularly when
using optimized finite difference stencils.

Subscribe to L3