Scaling limit of a weakly asymmetric simple exclusion process in the framework of regularity structures
Abstract
I will report on ongoing joint work with Sam Fisher on showing that the mapping class group has a finite index subgroup whose group ring embeds in a division ring. Our methods involve p-adic analytic groups, but no prior knowledge of this will be assumed and much of the talk will be devoted to explaining some of the underlying theory. Time permitting, I will also discuss some consequences for the profinite topology for the mapping class group and potential extensions to Out(RAAG).
I will discuss recent and ongoing work (mostly with J. Zou).
In this talk, I will present a result proved in my recent paper arXiv:2502.13580. I will discuss biharmonic maps between (and submanifolds of) conformally compact manifolds, a large class of complete manifolds generalizing hyperbolic space. After an introduction to conformally compact geometry, I will discuss one of the main results of the paper: if S is a properly embedded sub-manifold of a conformally compact manifold (N,h), and moreover S is transverse to the boundary and (N,h) has non-positive curvature, then S must be minimal. This result confirms a conjecture known as the Generalized Chen’s Conjecture, in the conformally compact context.
Symplectic capacities are symplectic invariants that measure the “size” of symplectic manifolds and are designed to capture phenomena of symplectic rigidity.
In this talk, I will focus on symplectic capacities of fiberwise convex domains in cotangent bundles. This setting provides a natural link to the systolic geometry of the base manifold. I will survey current results and discuss the variety of techniques used to compute symplectic capacities, ranging from billiard dynamics to pseudoholomorphic curves and symplectic homology. I will illustrate these techniques using disk tangent bundles of ellipsoids as an example.