Mon, 16 Feb 2026
14:15
L4

Embedded minimal surfaces in closed analytic 3-manifolds

Ben Sharp
(Leeds)
Abstract

I will discuss an ongoing joint work with Luigi Appolloni and Andrea Malchiodi concerning the above objects. Minimal surfaces are critical points of the area functional, which is analytic in this case, so we should expect critical points (minimal surfaces) to be either isolated or to belong to smooth nearby minimal foliations. On the other hand, the flat plane of multiplicity two in $\mathbb{R}^3$ can be (in compact regions) approximated by a blown-down catenoid, which will converge back to the plane with multiplicity two in the limit. Hence a plane of multiplicity two cannot be thought of as being isolated, or belonging solely to a smooth family, because there are “nearby” minimal surfaces of distinct topology weakly converging to it. We will nevertheless prove that, when the ambient manifold is closed and analytic, this type of local degeneration is impossible amongst closed and embedded minimal surfaces of bounded topology: such surfaces, even with multiplicity are either isolated or belong to smooth families of nearby minimal surfaces.  

Mon, 02 Mar 2026
14:15
L4

Metric wall-crossing

Ruadhai Dervan
(University of Warwick)
Abstract
Moduli spaces in algebraic geometry parametrise stable objects (bundles, varieties,...), and hence depend on a choice of stability condition. As one varies the stability condition, the moduli spaces vary in a well-behaved manner, through what is known as wall-crossing. As a general principle, moduli spaces admit natural Weil-Petersson metrics; I will state conjectures around the metric behaviour of moduli spaces as one varies the stability condition.
 
I will then prove analogues of these results in the model setting of symplectic quotients of complex manifolds, or equivalently geometric invariant theory. As one varies the input that determines a quotient, I will state results which explain the metric geometry of the resulting quotients (more precisely: Gromov-Hausdorff convergence towards walls, and metric flips across walls). As a byproduct of the approach, I will extend variation of geometric invariant theory to the setting of non-projective complex manifolds.
Mon, 23 Feb 2026
14:15
L4

A toric case of the Thomas-Yau conjecture

Jacopo Stoppa
(SISSA)
Abstract

We consider a class of Lagrangian sections L contained in certain Calabi-Yau Lagrangian fibrations (mirrors of toric weak Fano manifolds). We prove that a form of the Thomas-Yau conjecture holds in this case: L is isomorphic to a special Lagrangian section in this class if and only if a stability condition holds, in the sense of a slope inequality on objects in a set of exact triangles in the Fukaya-Seidel category. This agrees with general proposals by Li. On
surfaces and threefolds, under more restrictive assumptions, this result can be used to show a precise relation with Bridgeland stability, as predicted by Joyce. Based on arXiv:2505.07228 and arXiv:2508.17709.

Fri, 13 Mar 2026

11:00 - 12:00
L4

Stop abusing Turing

Dr Thomas Woolley
(Dept of Maths Cardiff University)
Abstract

Everything you have been taught about Turing patterns is wrong! (Well, not everything, but qualifying statements tend to weaken a punchy first sentence). Turing patterns are universally used to generate and understand patterns across a wide range of biological phenomena. They are wonderful to work with from a theoretical, simulation and application point of view. However, they have a paradoxical problem of being too easy to produce generally, whilst simultaneously being heavily dependent on the details. In this talk I demonstrate how to fix known problems such as small parameter regions and sensitivity, but then highlight a new set of issues that arise from usually overlooked issues, such as boundary conditions, initial conditions, and domain shape. Although we’ve been exploring Turing’s theory for longer than I’ve been alive, there’s still life in the old (spotty) dog yet.

Fri, 06 Mar 2026

11:00 - 12:00
L4

Identifiability of stochastic and spatial models in mathematical biology

Dr Alexander Browning
(Dept of Mathematics University of Melbourne)
Abstract
Effective application of mathematical models to interpret biological data and make accurate predictions often requires that model parameters are identifiable. Requisite to identifiability from a finite amount of noisy data is that model parameters are first structurally identifiable: a mathematical question that establishes whether multiple parameter values may give rise to indistinguishable model outputs. Approaches to assess structural identifiability of deterministic ordinary differential equation models are well-established, however tools for the assessment of the increasingly relevant stochastic and spatial models remain in their infancy. 
 
I provide in this talk an introduction to structural identifiability, before presenting new frameworks for the assessment of stochastic and partial differential equations. Importantly, I discuss the relevance of our methodology to model selection, and more the practical and aptly named practical identifiability of parameters in the context of experimental data. Finally, I conclude with a brief discussion of future research directions and remaining open questions.
Fri, 27 Feb 2026

11:00 - 12:00
L4

The life of a Turing Pattern

Dr Robert Van Gorder
(Department of Mathematics and Statistics University of Otago)
Abstract

We survey the life of a Turing pattern, from initial diffusive instability through the emergence of dominant spatial modes and to an eventual spatially heterogeneous pattern. While many mathematically ideal Turing patterns are regular, repeating in structure and remaining of a fixed length scale throughout space, in the real world there is often a degree of irregularity to patterns. Viewing the life of a Turing pattern through the lens of spatial modes generated by the geometry of the bounded space domain housing the Turing system, we discuss how irregularity in a Turing pattern may arise over time due to specific features of this space domain or specific spatial dependencies of the reaction-diffusion system generating the pattern.

Fri, 20 Feb 2026

11:00 - 12:00
L4

The rogue within: uncovering hidden heterogeneity in heart cell networks

Dr Noemi Picco
(Dept. of Maths, Swansea University)
Abstract

Normal heart function relies of the fine-tuned synchronization of cellular components. In healthy hearts, calcium oscillations and physical contractions are coupled across a synchronised network of 3 billion heart cells. When the process of functional isolation of rogue cells isn’t successful, the network becomes maladapted, resulting in cardiovascular diseases, including heart failure and arrythmia. To advance knowledge on this normal-to-disease transition we must first address the lack of a mechanistic understanding of the plastic readaptation of these networks. In this talk I will explore coupling and loss of synchronisation using a mathematical model of calcium oscillations informed by experimental data. I will show some preliminary results pointing at the heterogeneity hidden behind seemingly uniform cell populations, as a causative mechanism behind disrupted dynamics in maladapted networks.

Fri, 13 Feb 2026

11:00 - 12:00
L4

Sharp habitat shifts, evolutionary tipping points and rescue: Quantifying the perilous path of a specialist species towards a refugium in a changing environment via a PDE model

Dr Leonard Dekens
(The Francis Crick Institute London)
Abstract

Specialist species thrive under specific environmental conditions in narrow geographic ranges and are widely recognized as heavily threatened by climate deregulation. Many might rely on both their potential to adapt and to disperse towards a refugium to avoid extinction. It is thus crucial to understand the influence of environmental conditions on the unfolding process of adaptation. I will present a PDE model of the eco-evolutionary dynamics of a specialist species in a two-patch environment with moving optima. The transmission of the adaptive trait across generations is modelled by a non-linear, non-local operator of sexual reproduction. In an asymptotic regime of small variance, I justify that the local trait distributions are well approximatted by Gaussian distributions with fixed variances, which allows to report the analysis on the closed system of moments. Thanks to a separation of time scales between ecology and evolution, I next derive a limit system of moments and analyse its stationary states. In particular, I identify the critical environmental speed for persistence, which reflects how both the existence of a refugium and the cost of dispersal impact extinction patterns. Additionally, the analysis provides key insights regarding the path towards this refugium. I show that there exists a critical environmental speed above which the species crosses a tipping point, resulting into an abrupt habitat switch from its native patch to the refugium. When selection for local adaptation is strong, this habitat switch passes through an evolutionary ‘‘death valley’’ that can promote extinction for lower environmental speeds than the critical one.

Subscribe to L4