12:00
12:00
A new lower bound for the Ramsey numbers $R(3,k)$
Abstract
In this talk I will discuss a new lower bound for the off-diagonal Ramsey numbers $R(3,k)$. For this, we develop a version of the triangle-free process that is significantly easier to analyse than the original process. We then 'seed' this process with a carefully chosen graph and show that it results in a denser graph that is still sufficiently pseudo-random to have small independence number.
This is joint work with Marcelo Campos, Matthew Jenssen and Marcus Michelen.
12:00
Celestial symmetries of black hole horizons
Abstract
I will present a novel correspondence between the gravitational phase space at null infinity and the subleading phase space for finite-distance null hypersurfaces, such as black hole horizons. Utilizing the Newman-Penrose formalism and an off-shell Weyl transformation, this construction transfers key structures from asymptotic boundaries to null surfaces in the bulk—for instance, a notion of radiation. Imposing self-duality conditions, I will identify the celestial symmetries and construct their canonical generators for finite-distance null hypersurfaces. This framework provides new observables for black hole physics.
12:00
Calabi-Yau Varieties in Quantum Electrodynamics
Abstract
The self-energies in Quantum Electrodynamics (QED) are not only fundamental physical quantities but also well-suited for investigating the mathematical structure of perturbative Quantum Field Theory. In this talk, I will discuss the QED self-energies up to the fourth order in the loop expansion. Going beyond one loop, where the integrals can be expressed in terms of multiple polylogarithms, we encounter functions associated with an elliptic curve, a K3 surface and a Calabi-Yau threefold. I will review the method of differential equations and apply it to the scalar Feynman integrals appearing in the self-energies. Special emphasis will be placed on the concept of canonical bases and on how to generalize them beyond the polylogarithmic case, where they are well understood. Furthermore, I will demonstrate how canonical integrals may be identified through a suitable integrand analysis.
15:30
Relative orientations and the cyclic Deligne conjecture
Abstract
A consequence of the works of Costello and Lurie is that the Hochschild chain complex of a Calabi-Yau category admits the structure of a framed E_2 algebra (the genus zero operations). I will describe a new algebraic point of view on these operations which admits generalizations to the setting of relative
Calabi-Yau structures, which do not seem to fit into the framework of TQFTs. In particular, we obtain a generalization of string topology to manifolds with boundary, as well as interesting operations on Hochschild homology of Fano varieties. This is joint work with Chris Brav.
15:30
Bordism categories and orientations of moduli spaces
Abstract
15:30
Cored perverse sheaves
Abstract
I will describe some recent efforts to recreate the miraculous properties of perverse sheaves on complex analytic spaces in the setting of real stratified spaces.
The Maze Problem
Abstract
Do there exist universal sequences for all mazes on the two-dimensional integer lattice? We will give background on this question, as well as some recent results. Joint work with Mariaclara Ragosta.
SDP, MaxCut, Discrepancy, and the Log-Rank Conjecture
Abstract
Semidefinite programming (SDP) is a powerful tool in the design of approximation algorithms. After providing a gentle introduction to the basics of this method, I will explore a different facet of SDP and show how it can be used to derive short and elegant proofs of both classical and new estimates related to the MaxCut problem and discrepancy theory in graphs and matrices.
Building on this, I will demonstrate how these results lead to an improved upper bound on the celebrated log-rank conjecture in communication complexity.
Frame matroids with a distinguished frame element
Abstract
A matroid is frame if it can be extended such that it possesses a basis $B$ (a frame) such that every element is spanned by at most two elements of $B$. Frame matroids extend the class of graphic matroids and also have natural graphical representations. We characterise the inequivalent graphical representations of 3-connected frame matroids that have a fixed element $\ell$ in their frame $B$. One consequence is a polynomial time recognition algorithm for frame matroids with a distinguished frame element.
Joint work with Jim Geelen and Cynthia Rodríquez.