Fri, 28 Feb 2025
15:00
L4

Optimal partial transport and non-negatively curved Alexandrov spaces

Mauricio Che
(University of Vienna)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

In this talk, I will discuss Figalli and Gigli’s formulation of optimal transport between non-negative Radon measures in the setting of metric pairs. This framework allows for the comparison of measures with different total masses by introducing an auxiliary set that compensates for mass discrepancies. Within this setting, classical characterisations of optimal transport plans extend naturally, and the resulting spaces of measures are shown to be complete, separable, geodesic, and non-branching, provided the underlying space possesses these properties. Moreover, we prove that the spaces of measures 
equipped with the $L^2$-optimal partial transport metric inherit non-negative curvature in the sense of Alexandrov. Finally, generalised spaces of persistence diagrams embed naturally into these spaces of measures, leading to a unified perspective from which several known geometric properties of generalised persistence diagram spaces follow. These results build on recent work by Divol and Lacombe and generalise classical results in optimal transport.

Mon, 09 Jun 2025
16:30
L4

Annuli and strip : the effect on the vortex patterns for the Ginzburg-Landau energy

Amandine Aftalion
(CNRS; laboratoire de mathématiques d'Orsay, Univ Paris-Saclay)
Abstract

We are going to study the Ginzburg-Landau energy for two specific geometries, related to the very experiments on fermionic condensates: annuli and strips 

The specific geometry of a strip provides connections between solitons and vortices, called solitonic vortices, which are vortices with a solitonic behaviour in the infinite direction of the strip. Therefore, they are very different from classical vortices which have an algebraic decay at infinity. We show that there exist stationary solutions to the Gross-Pitaevskii equation with k vortices on a transverse line, which bifurcate from the soliton solution as the width of the strip is increased. This is motivated by recent experiments on the instability of solitons by imposing a phase shift in an elongated condensate for bosonic or fermionic atoms.

For annuli, we prescribe a very large degree on the outer boundary and find that either there is a transition from a giant vortex to vortices also in the bulk but tending to the outer boundary.

This is joint work with Ph. Gravejat and E.Sandier for solitonice vortices and Remy Rodiac for annuli.
 

Mon, 10 Mar 2025
16:30
L4

Stability of Rayleigh-Jeans equilibria in the kinetic FPUT equation

Angeliki Menegaki
(Imperial College )
Abstract

In this talk we consider the four-waves spatially homogeneous kinetic equation arising in weak wave turbulence theory from the microscopic Fermi-Pasta-Ulam-Tsingou (FPUT) oscillator chains.  This equation is sometimes referred to as the Phonon Boltzmann Equation. I will discuss the global existence and stability of solutions of the kinetic equation near the Rayleigh-Jeans (RJ) thermodynamic equilibrium solutions. This is a joint work with Pierre Germain (Imperial College London) and Joonhyun La (KIAS).

Mon, 02 Jun 2025
16:30
L4

Overhanging solitary water waves

Monica Musso
(University of Bath)
Abstract
In this talk we consider the classical water wave problem for an incompressible inviscid fluid occupying a time-dependent domain in the plane, whose boundary consists
of a fixed horizontal bed  together with an unknown free boundary separating the fluid from the air outside the confining region.
We provide the first construction of overhanging gravity water waves having the approximate form of a disk joined to a strip by a thin neck. The waves are solitary with constant vorticity, and exist when an appropriate dimensionless gravitational constant is sufficiently small. Our construction involves combining three explicit solutions to related problems: a disk of fluid in rigid rotation, a linear shear flow in a strip, and a rescaled version of an exceptional domain discovered by Hauswirth, Hélein, and Pacard, the hairpin. The method developed here is related to the construction of constant mean curvature surfaces through gluing.
This result is in collaboration with J. Davila, M. Del Pino, M. Wheeler.
Mon, 26 May 2025
16:30
L4

Are $L^\infty$ solutions to hyperbolic systems of conservation laws unique?

Sam Krupa
(ENS Paris)
Abstract

For hyperbolic systems of conservation laws in 1-D, fundamental questions about uniqueness and blow up of weak solutions still remain even for the apparently “simple” systems of two conserved quantities such as isentropic Euler and the p-system. Similarly, in the multi-dimensional case, a longstanding open question has been the uniqueness of weak solutions with initial data corresponding to the compressible vortex sheet. We address all of these questions by using the lens of convex integration, a general method of constructing highly irregular and non-unique solutions to PDEs. Our proofs involve computer-assistance. This talk is based on joint work with László Székelyhidi, Jr.
 

Mon, 19 May 2025
16:30
L4

Weak solutions for the Navier-Stokes system for a compressible fluid with non-isotropic viscous-stress tensor.

Cosmin Burtea
(Université Paris Cité)
Abstract

When dealing with PDEs arising in fluid mechanics, bounded-energy weaksolutions are, in many cases, the only type of solutions for which one can guarantee global existence without imposing any restrictions on the size of the initial data or forcing terms. Understanding how to construct such solutions is also crucial for designing stable numerical schemes.

In this talk, we will explain the strategy for contructing weak solutions for the Navier-Stokes system for viscous compressible flows, emphasizing the difficulties encountered in the case of non-isotropic viscous stress tensors. In particular, I will present some results obtained in collaboration with Didier Bresch and Maja Szlenk.

Mon, 12 May 2025
16:30
L4

Viscoelastic models for tumour growth

Dennis Trautwein
(Uni-Regensburg)
Abstract

In this talk, we present a mathematical model for tumour growth that incorporates viscoelastic effects. Starting from a basic system of PDEs, we gradually introduce the relevant biological and physical mechanisms and explain how they are integrated into the model. The resulting system features a Cahn--Hilliard type equation for the tumour cells coupled to a convection-reaction-diffusion equation for a nutrient species, and a viscoelastic subsystem for an internal velocity.
Key biological processes such as active transport, apoptosis, and proliferation are modeled via source and sink terms as well as cross-diffusion effects. The viscoelastic behaviour is described using the Oldroyd-B model, which is based on a multiplicative decomposition of the deformation gradient to account for elasticity alongside growth and relaxation effects.
We will highlight several of these effects through numerical simulations.
Moreover, we discuss the main analytical and numerical challenges. Particular focus will be given to the treatment of source and cross-diffusion terms, the elastic energy density, and the difficulties arising from the viscoelastic subsystem. The main analytical result is the global-in-time existence of weak solutions in two spatial dimensions, under the assumption of additional viscoelastic diffusion in the Oldroyd-B equation.
This work is based on joint work with Harald Garcke (University of Regensburg, Germany) and Balázs Kovács (University of Paderborn, Germany).

Mon, 28 Apr 2025
16:30
L4

Wave localization at subwavelength scales

Habib Amari
(ETH)
Abstract

Systems of high-contrast resonators can be used to control and manipulate wave-matter interactions at scales that are much smaller than the operating wavelengths. The aim of this talk is to review recent studies of ordered and disordered systems of subwavelength resonators and to explain some of their topologically protected localization properties. Both reciprocal and non-reciprocal systems will be considered.
 

Mon, 17 Mar 2025
16:30
L4

Bloch-Torrey PDE in NMR and completely monotone functions.

Yury Grabovsky
(Temple Mathematics)
Abstract

In the first half of the talk I will review the theory of nuclear magnetic resonance (NMR), leading to the Bloch-Torrey PDE. I will then describe the pulsed-gradient spin-echo method for measuring the Fourier transform of the voxel-averaged propagator of the Bloch-Torrey equation.  This technique permits one to compute the diffusion coefficient in a voxel. For complex biological tissue, as in the brain, the standard model represents spin-echo as a multiexponential signal, whose exponents and coefficients describe the diffusion coefficients and volume fractions of isolated tissue compartments, respectively. The question of identifying these parameters from experimental measurements leads us to investigate the degree of well-posedness of this problem that I will discuss in the second half of the talk. We show that the parameter reconstruction problem exhibits power law transition to ill-posedness, and derive the explicit formula for the exponent by reformulating the problem in terms of the integral equation that can be solved explicitly. This is a joint work with my Ph.D. student Henry J. Brown.

Tue, 18 Feb 2025

14:00 - 15:00
L4

Cube-root concentration of the chromatic number of $G(n,1/2)$ – sometimes

Oliver Riordan
(University of Oxford)
Abstract
A classical question in the theory of random graphs is 'how much does the chromatic number of $G(n,1/2)$ vary?' For example, roughly what is its standard deviation $\sigma_n$? An old argument of Shamir and Spencer gives an upper bound of $O(\sqrt{n})$, improved by a logarithmic factor by Alon. For general $n$, a result with Annika Heckel implies that $n^{1/2}$ is tight up to log factors. However, according to the 'zig-zag' conjecture $\sigma_n$ is expected to vary between $n^{1/4+o(1)}$ and $n^{1/2+o(1)}$ as $n$ varies. I will describe recent work with Rob Morris, building on work of Bollobás, Morris and Smith, giving an $O^*(n^{1/3})$ upper bound for certain values of $n$, the first bound beating $n^{1/2-o(1)}$, and almost matching the zig-zag conjecture for these $n$. The proof uses martingale methods, the entropy approach of Johansson, Kahn and Vu, the second moment method, and a new (we believe) way of thinking about the distribution of the independent sets in $G(n,1/2)$.
Subscribe to L4