Mon, 29 Jan 2024

16:30 - 17:30
L5

Asymptotic stability of traveling waves for one-dimensional nonlinear Schrodinger equations

Charles Collot
(CY Cergy Paris Université )
Abstract

We consider one-dimensional nonlinear Schrodinger equations around a traveling wave. We prove its asymptotic stability for general nonlinearities, under the hypotheses that the orbital stability condition of Grillakis-Shatah-Strauss is satisfied and that the linearized operator does not have a resonance and only has 0 as an eigenvalue. As a by-product of our approach, we show long-range scattering for the radiation remainder. Our proof combines for the first time modulation techniques and the study of space-time resonances. We rely on the use of the distorted Fourier transform, akin to the work of Buslaev and Perelman and, and of Krieger and Schlag, and on precise renormalizations, computations, and estimates of space-time resonances to handle its interaction with the soliton. This is joint work with Pierre Germain.

Mon, 20 Nov 2023
15:45
L5

OXPDE-WCMB seminar: From individual-based models to continuum descriptions: Modelling and analysis of interactions between different populations.

Mariya Ptashnyk
(Heriot-Watt University, Edinburgh)
Abstract

First we will show that the continuum counterpart of the discrete individual-based mechanical model that describes the dynamics of two contiguous cell populations is given by a free-boundary problem for the cell densities.  Then, in addition to interactions, we will consider the microscopic movement of cells and derive a fractional cross-diffusion system as the many-particle limit of a multi-species system of moderately interacting particles. 

Tue, 13 Feb 2024

14:00 - 15:00
L5

Functional Calculus, Bornological Algebra, and Analytic Geometry

Jack Kelly
((University of Oxford))
Abstract

Porta and Yue Yu's model of derived analytic geometry takes as its category of basic, or affine, objects the category opposite to simplicial algebras over the entire functional calculus Lawvere theory. This is analogous to Lurie's approach to derived algebraic geometry where the Lawvere theory is the one governing simplicial commutative rings, and Spivak's derived smooth geometry, using the Lawvere theory of C-infinity-rings. Although there have been numerous important applications including GAGA, base-change, and Riemann-Hilbert theorems, these methods are still missing some crucial ingredients. For example, they do not naturally beget a good definition of quasi-coherent sheaves satisfying descent. On the other hand, the Toen-Vezzosi-Deligne approach of geometry relative to a symmetric monoidal category naturally provides a definition of a category of quasi-coherent sheaves, and in two such approaches to analytic geometry using the categories of bornological and condensed abelian groups respectively, these categories do satisfy descent.  In this talk I will explain how to compare the Porta and Yue Yu model of derived analytic geometry with the bornological one. More generally we give conditions on a Lawvere theory such that its simplicial algebras embed fully faithfully into commutative bornological algebras. Time permitting I will show how the Grothendieck topologies on both sides match up, allowing us to extend the embedding to stacks.

This is based on joint work with Oren Ben-Bassat and Kobi Kremnitzer, and follows work of Kremnitzer and Dennis Borisov.

Tue, 23 Jan 2024

14:00 - 15:00
L5

On a quantitative version of Harish-Chandra's regularity theorem and singularities of representations

Yotam Hendel
(KU Leuven)
Abstract

Let G be a reductive group defined over a local field of characteristic 0 (real or p-adic). By Harish-Chandra’s regularity theorem, the character Θ_π of an irreducible representation π of G is given by a locally integrable function f_π on G. It turns out that f_π has even better integrability properties, namely, it is locally L^{1+r}-integrable for some r>0. This gives rise to a new singularity invariant of representations \e_π by considering the largest such r.

We explore \e_π, show it is bounded below only in terms of the group G, and calculate it in the case of a p-adic GL(n). To do so, we relate \e_π to the integrability of Fourier transforms of nilpotent orbital integrals appearing in the local character expansion of Θ_π. As a main technical tool, we use explicit resolutions of singularities of certain hyperplane arrangements. We obtain bounds on the multiplicities of K-types in irreducible representations of G for a p-adic G and a compact open subgroup K.

Based on a joint work with Itay Glazer and Julia Gordon.

Tue, 23 Apr 2024

14:00 - 15:00
L5

Symmetric spaces, where Topology meets Representation Theory

Dmitriy Rumynin
(University of Warwick)
Abstract

We will use Representation Theory to calculate systematically and efficiently the topological invariants of compact Lie groups and homogeneous spaces.
 

Most of the talk is covered by our second paper on ArXiv with John Jones and Adam Thomas, who are both at Warwick. The paper is part of the ongoing project to study the topological invariants of the four exceptional Rosenfeld projective planes.

Tue, 31 Oct 2023
14:00
L5

Elliptic representations

Dan Ciubotaru
(Oxford)
Abstract

In representation theory, the characters of induced representations are explicitly known in terms of the character of the inducing representation. This leads to the question of understanding the elliptic representation space, i.e., the space of representations modulo the properly (parabolically) induced characters. I will give an overview of the description of the elliptic space for finite Weyl groups, affine Weyl groups, affine Hecke algebras, and their connection with the geometry of the nilpotent cone of a semisimple complex Lie algebra. These results fit together in the representation theory of semisimple p-adic groups, where they lead to a new description of the elliptic space within the framework of the local Langlands parameterisation.

Fri, 27 Oct 2023

15:00 - 16:00
L5

Universality in Persistence Diagrams and Applications

Primoz Skraba
(Queen Mary University, Mathematical Sciences)
Further Information

 

Primoz Skraba is a Senior Lecturer in Applied and Computational Topology. His research is broadly related to data analysis with an emphasis on topological data analysis. Generally, the problems he considers span both theory and applications. On the theory side, the areas of interest include stability and approximation of algebraic invariants, stochastic topology (the topology of random spaces), and algorithmic research. On the applications side, he focuses on combining topological ideas with machine learning, optimization, and  other statistical tools. Other applications areas of interest include visualization and geometry processing.

He received a PhD in Electrical Engineering from Stanford University in 2009 and has held positions at INRIA in France and the Jozef Stefan Institute, the University of Primorska, and the University of Nova Gorica in Slovenia, before joining Queen Mary University of London in 2018. He is also currently a Fellow at the Alan Turing Institute.

Abstract

In this talk, I will present joint work with Omer Bobrowski:  a series of statements regarding the behaviour of persistence diagrams arising from random point-clouds. I will present evidence that, viewed in the right way, persistence values obey a universal probability law, that depends on neither the underlying space nor the original distribution of the point-cloud.  I will present two versions of this universality: “weak” and “strong” along with progress which has been made in proving the statements.  Finally, I will also discuss some applications of this phenomena based on detecting structure in data.

Fri, 01 Dec 2023

15:00 - 16:00
L5

Computing algebraic distances and associated invariants for persistence

Martina Scolamiero
(KTH Stockholm)
Further Information

Martina Scolamiero is an Assistant Professor in Mathametics with specialization in Geometry and Mathematical Statistics in Artificial Intelligence.

Her research is in Applied and Computational Topology, mainly working on defining topological invariants which are suitable for data analysis, understanding their statistical properties and their applicability in Machine Learning. Martina is also interested in applications of topological methods to Neuroscience and Psychiatry.

Abstract

Pseudo metrics between persistence modules can be defined starting from Noise Systems [1].  Such metrics are used to compare the modules directly or to extract stable vectorisations. While the stability property directly follows from the axioms of Noise Systems, finding algorithms or closed formulas to compute the distances or associated vectorizations  is often a difficult problem, especially in the multi-parameter setting. In this seminar I will show how extra properties of Noise Systems can be used to define algorithms. In particular I will describe how to compute stable vectorisations with respect to Wasserstein distances [2]. Lastly I will discuss ongoing work (with D. Lundin and R. Corbet) for the computation of a geometric distance (the Volume Noise distance) and associated invariants on interval modules.

[1] M. Scolamiero, W. Chachólski, A. Lundman, R. Ramanujam, S. Oberg. Multidimensional Persistence and Noise, (2016) Foundations of Computational Mathematics, Vol 17, Issue 6, pages 1367-1406. doi:10.1007/s10208-016-9323-y.

[2] J. Agerberg, A. Guidolin, I. Ren and M. Scolamiero. Algebraic Wasserstein distances and stable homological invariants of data. (2023) arXiv: 2301.06484.

Fri, 24 Nov 2023

15:00 - 16:00
L5

Indecomposables in multiparameter persistence

Ulrich Bauer
(TU Munich)
Further Information

Ulrich Bauer is an associate professor (W3) in the department of mathematics at the Technical University of Munich (TUM), leading the Applied & Computational Topology group. His research revolves around application-motivated concepts and computational methods in topology and geometry, popularized by application areas such as topological data analysis. Some of his key research areas are persistent homology, discrete Morse theory, and geometric complexes.

Abstract

I will discuss various aspects of multi-parameter persistence related to representation theory and decompositions into indecomposable summands, based on joint work with Magnus Botnan, Steffen Oppermann, Johan Steen, Luis Scoccola, and Benedikt Fluhr.

A classification of indecomposables is infeasible; the category of two-parameter persistence modules has wild representation type. We show [1] that this is still the case if the structure maps in one parameter direction are epimorphisms, a property that is commonly satisfied by degree 0 persistent homology and related to filtered hierarchical clustering. Furthermore, we show [2] that indecomposable persistence modules are dense in the interleaving distance, and that being nearly-indecomposable is a generic property of persistence modules. On the other hand, the two-parameter persistence modules arising from interleaved sets (relative interleaved set cohomology) have a very well-behaved structure [3] that is encoded as a complete invariant in the extended persistence diagram. This perspective reveals some important but largely overlooked insights about persistent homology; in particular, it highlights a strong reason for working at the level of chain complexes, in a derived category [4].

 

[1] Ulrich Bauer, Magnus B. Botnan, Steffen Oppermann, and Johan Steen, Cotorsion torsion triples and the representation theory of filtered hierarchical clustering, Adv. Math. 369 (2020), 107171, 51. MR4091895

[2] Ulrich Bauer and Luis Scoccola, Generic multi-parameter persistence modules are nearly indecomposable, 2022.

[3] Ulrich Bauer, Magnus Bakke Botnan, and Benedikt Fluhr, Structure and interleavings of relative interlevel set cohomology, 2022.

[4] Ulrich Bauer and Benedikt Fluhr, Relative interlevel set cohomology categorifies extended persistence diagrams, 2022.

 

Fri, 10 Nov 2023

15:00 - 16:00
L5

Topological Data Analysis (TDA) for Geographical Information Science (GIS)

Padraig Corcoran
(Cardiff University)
Further Information

Dr Padraig Corcoran is a Senior Lecturer and the Director of Research in the School of Computer Science and Informatics (COMSC) at Cardiff University.

Dr Corcoran has much experience and expertise in the fields of graph theory and applied topology. He is particularly interested in applications to the domains of geographical information science and robotics.

Abstract

Topological data analysis (TDA) is an emerging field of research, which considers the application of topology to data analysis. Recently, these methods have been successfully applied to research problems in the field of geographical information science (GIS). This includes the problems of Point of Interest (PoI), street network and weather analysis. In this talk I will describe how TDA can be used to provide solutions to these problems plus how these solutions compare to those traditionally used by GIS practitioners. I will also describe some of the challenges of performing interdisciplinary research when applying TDA methods to different types of data.

Subscribe to L5