Fri, 03 Jun 2022

12:00 - 13:00
L5

Entanglement Measures in Quantum Field Theory: An Approach Based on Symmetry Fields

Dr Olalla Castro Alvaredo
(City University London)
Abstract

In this talk I will review some of the key ideas behind the study of entanglement measures in 1+1D quantum field theories employing the so-called branch point twist field approach. This method is based on the existence of a one-to-one correspondence between different entanglement measures and different multi-point functions of a particular type of symmetry field. It is then possible to employ standard methods for the evaluation of correlation functions to understand properties of entanglement in bipartite systems. Time permitting, I will then present a recent application of this approach to the study of a new entanglement measure: the symmetry resolved entanglement entropy.

Thu, 19 May 2022

16:00 - 17:00
L5

Correlations of almost primes

Natalie Evans
(King's College London)
Abstract

The Hardy-Littlewood generalised twin prime conjecture states an asymptotic formula for the number of primes $p\le X$ such that $p+h$ is prime for any non-zero even integer $h$. While this conjecture remains wide open, Matom\"{a}ki, Radziwi{\l}{\l} and Tao proved that it holds on average over $h$, improving on a previous result of Mikawa. In this talk we will discuss an almost prime analogue of the Hardy-Littlewood conjecture for which we can go beyond what is known for primes. We will describe some recent work in which we prove an asymptotic formula for the number of almost primes $n=p_1p_2 \le X$ such that $n+h$ has exactly two prime factors which holds for a very short average over $h$.

Fri, 17 Jun 2022

16:00 - 17:00
L5

Defect Central Charges

Adam Chalabi
(Southampton University)
Abstract

Conformal defects can be characterised by their contributions to the Weyl anomaly. The coefficients of these terms, often called defect central charges, depend on the particular defect insertion in a given conformal field theory. I will review what is currently known about defect central charges across dimensions, and present novel results. I will discuss many examples where they can be computed exactly without requiring any approximations or limits. Particular emphasis will be placed on recently developed tools for superconformal defects as well as defects in free theories.

Thu, 12 May 2022

16:00 - 17:00
L5

Recent work on van der Waerden’s conjecture

Rainer Dietmann
(Royal Holloway)
Abstract

Last summer, there was a lot of activity regarding an old conjecture of van der Waerden, culminating in its solution by Bhargava, and including joint work by Sam Chow and myself on which I want to report in this talk: We showed that the number of irreducible monic integer polynomials of degree n, with coefficients in absolute value bounded by H, which have Galois group different from S_n and A_n, is of order of magnitude O(H^{n-1.017}), providing that n is at least 3 and is different from 7,8,10. Apart from the alternating group and excluding degrees 7,8,10, this establishes the aforementioned conjecture to the effect that irreducible non-S_n polynomials are significantly less frequent than reducible polynomials.

Tue, 17 May 2022

12:00 - 13:15
L5

Peeling at an extreme black hole horizon

Prof Jean-Philippe Nicolas
(Brest)
Abstract

Black hole horizons are normally at finite spatial distance from the exterior region, but when they are degenerate (or extreme as they are usually referred to in this case) the spatial distance becomes infinite. One can still fall into the black hole in finite proper time but the crossing sphere is replaced by an "internal infinity". Near to the horizon of an extreme Kerr black hole, the scattering properties of test fields bear some similarities to what happens at an asymptotically flat infinity. This observation triggered a natural question concerning the peeling behaviour of test fields near such horizons. A geometrical tool known as the Couch-Torrence inversion is particularly well suited to studying this question. In this talk, I shall recall some essential notions on the peeling of fields at an asymptotically flat infinity and describe the Couch-Torrence inversion in the particular case of extreme Reissner-Nordström black holes, where it acts as a global conformal isometry of the spacetime. I will then show how to extend this inversion to more general spherically symmetric extreme horizons and describe what results can be obtained in terms of peeling. This is a joint ongoing project with Jack Borthwick (University of Besançon) and Eric Gourgoulhon (Paris Observatory).

Wed, 08 Jun 2022

16:00 - 17:00
L5

Random Walks on Lie Groups and Diophantine Approximation

Constantin Kogler
(University of Cambridge)
Abstract

After a general introduction to the study of random walks on groups, we discuss the relationship between limit theorems for random walks on Lie groups and Diophantine properties of the underlying distribution. Indeed, we will discuss the classical abelian case and more recent results by Bourgain-Gamburd for compact simple Lie groups such as SO(3). If time permits, we discuss some new results for non-compact simple Lie groups such as SL_2(R). We hope to touch on the relevant methods from harmonic analysis, number theory and additive combinatorics. The talk is aimed at a general audience. 

Wed, 01 Jun 2022

16:00 - 17:00
L5

Existence of branched coverings of surfaces

Filippo Baroni
(University of Oxford)
Abstract

A branched covering between two surfaces looks like a regular covering map except for finitely many branching points, where some non-trivial ramification may occur. Informally speaking, the existence problem asks whether we can find a branched covering with prescribed behaviour around its branching points.

A variety of techniques have historically been employed to tackle this problem, ranging from studying representations of surface groups into symmetric groups to drawing "dessins d'enfant" on the covering surface. After introducing these techniques and explaining how they can be applied to the existence problem, I will briefly present a conjecture unexpectedly relating branched coverings and prime numbers.
 

Wed, 25 May 2022

16:00 - 17:00
L5

Pseudo-Anosov flows on 3-manifolds

Anna Parlak
Abstract

This will be a gentle introduction to the theory of pseudo-Anosov  flows on 3-manifolds, as seen from the perspective of a topologist and not a dynamicist.

I will start by considering geodesic flows on the unit tangent bundles of hyperbolic surfaces. This will lead to a definition of an Anosov and then a pseudo-Anosov flow on a 3-manifold. After discussing a couple of examples, I will outline some connections between pseudo-Anosov flows and other aspects of 3-manifold topology/ geometry/ group theory.

Wed, 11 May 2022

16:00 - 17:00
L5

Acylindrical hyperbolicity via mapping class groups

Alice Kerr
(University of Oxford)
Abstract

We will give a fairly self contained introduction to acylindrically hyperbolic groups, using mapping class groups as a motivating example. This will be a mainly expository talk, the aim is to make my topology seminar talk in week 5 more accessible to people who are less familiar with these topics.

Fri, 20 May 2022

16:00 - 17:00
L5

Non-Invertible Symmetries from Discrete Gauging and Completeness of the Spectrum

Guillermo Arias-Tamargo
(Oviedo)
Abstract

We study global 1- and (d−2)-form symmetries for gauge theories based on disconnected gauge groups which include charge conjugation. For pure gauge theories, the 1-form symmetries are shown to be non-invertible. In addition, being the gauge groups disconnected, the theories automatically have a Z2
global (d−2)-form symmetry. We propose String Theory embeddings for gauge theories based on these groups. Remarkably, they all automatically come with twist vortices which break the (d−2)-form global symmetry. 

Subscribe to L5