15:00
15:00
15:00
Topological Analysis of Bone Microstructure, Directed Persistent Homology and the Persistent Laplacian for Data Science
Note: we would recommend to join the meeting using the Teams client for best user experience.
Abstract
In this talk, I will give an overview of recent joint work on Topological Data Analysis (TDA). The first one is an application of TDA to quantify porosity in pathological bone tissue. The second is an extension of persistent homology to directed simplicial complexes. Lastly, we present an evaluation of the persistent Laplacian in machine learning tasks. This is joint work with Ysanne Pritchard, Aikta Sharma, Claire Clarkin, Helen Ogden, and Sumeet Mahajan; David Mendez; and Tom Davies and Zhengchao Wang, respectively.
15:00
Generalized Multiple Subsampling for Persistent Homology
Abstract
Persistent homology is infeasible to compute when a dataset is very large. Inspired by the bootstrapping method, Chazal et al. (2014) proposed a multiple subsampling approach to approximate the persistence landscape of a massive dataset. In this talk, I will present an extension of the multiple subsampling method to a broader class of vectorizations of persistence diagrams and to persistence diagrams directly. First, I will review the statistical foundation of the multiple subsampling approach as applied to persistence landscapes in Chazal et al. (2014). Next, I will talk about how this analysis extends to a class of vectorized persistence diagrams called Hölder continuous vectorizations. Finally, I will address the challenges in applying this method to raw persistence diagrams for two measures of centrality: the mean persistence measure and the Fréchet mean of persistence diagrams. I will demonstrate these methods through simulation results and applications in estimating data shapes.
16:00
Geodesic cycles and Eisenstein classes for SL(2,Z)
Abstract
The geodesic cycles (resp. Eisenstein classes) for SL(2,Z) are special classes in the homology (resp. cohomology) of modular curve (for SL(2,Z)) defined by the closed geodesics (resp. Eisenstein series). It is known that the pairing between these geodesic cycles and Eisenstein classes gives the special values of partial zeta functions of real quadratic fields, and this has many applications. In this talk, I would like to report on some recent observations on the size of the homology subgroup generated by geodesic cycles and their applications. This is a joint work with Ryotaro Sakamoto.
Maria Pope: Uncovering Higher-Order Interactions in the Cortex: Applications of Multivariate Information Theory
Abstract
Creating networks of statistical dependencies between brain regions is a powerful tool in neuroscience that has resulted in many new insights and clinical applications. However, recent interest in higher-order interactions has highlighted the need to address beyond-pairwise dependencies in brain activity. Multivariate information theory is one tool for identifying these interactions and is unique in its ability to distinguish between two qualitatively different modes of higher-order interactions: synergy and redundancy. I will present results from applying the O-information, the partial entropy decomposition, and the local O-information to resting state fMRI data. Each of these metrics indicate that higher-order interactions are widespread in the cortex, and further that they reveal different patterns of statistical dependencies than those accessible through pairwise methods alone. We find that highly synergistic subsystems typically sit between canonical functional networks and incorporate brain regions from several of these systems. Additionally, canonical networks as well as the interactions captured by pairwise functional connectivity analyses, are strongly redundancy-dominated. Finally, redundancy/synergy dominance varies in both space and time throughout an fMRI scan with notable recurrence of sets of brain regions engaging synergistically. As a whole, I will argue that higher-order interactions in the brain are an under-explored space that, made accessible with the tools of multivariate information theory, may offer novel insights.
15:30
Frobenius categories and Homotopy Quantum Field Theories
Abstract
Topological Quantum Field Theories (TQFTs) have been studied as mathematical toy models for quantum field theories in physics and are described by a functor out of some bordism category. In dimension 2, TQFTs are fully classified by Frobenius algebras. Homotopy Quantum Field Theories (HQFTs), introduced by Turaev, consider additional homotopy data to some target space X on the bordism categories. For homotopy 1-types Turaev also gives a classification via crossed G-Frobenius algebras, where G denotes the fundamental group of X.
In this talk we will introduce a multi-object generalization of Frobenius algebras called Frobenius categories and give a version of this classification theorem involving the fundamental groupoid. Further, we will give a classification theorem for HQFTs with target homotopy 2-types by considering crossed modules (joint work with Alexis Virelizier).
Extended Pareto grid: a tool to compute the matching distance in biparameter persistent homology
Abstract
Multiparameter persistence is an area of topological data analysis that synthesises the geometric information of a topological space via filtered homology. Given a topological space and a function on it, one can consider a filtration given by the sublevel sets of the space induced by the function and then take the homology of such filtration. In the case when the filtering function assumes values in the real plane, the homological features of the filtered object can be recovered through a "curved" grid on the plane called the extended Pareto grid of the function. In this talk, we explore how the computation of the biparameter matching distance between regular filtering functions on a regular manifold depends on the extended Pareto grid of these functions.
15:30
Building surfaces from equilateral triangles
Abstract
The answer in the compact case is given by a famous classical theorem of Belyi, which states that a compact surface is equilaterally triangulable if and only if it is defined over a number field. These *Belyi surfaces* - and their associated “dessins d’enfants” - have found applications across many fields of mathematics, including mathematical physics.
In joint work with Chris Bishop, we give a complete answer of the same question for the case of infinitely many triangles (i.e., for non-compact Riemann surfaces). The talk should be accessible to a general mathematical audience, including postgraduate students.
Truth Be Told: How To Interpret Past Mathematicians
Abstract
How should we interpret past mathematicians who may use the same vocabulary as us but with different meanings, or whose philosophical outlooks differ from ours? Errors aside, it is often assumed that past mathematicians largely made true claims—but what exactly justifies that assumption?
In this talk, we will explore these questions through general philosophical considerations and three case studies: 19th-century analysis, 18th-century geometry, and 19th-century matricial algebra. In each case, we encounter a significant challenge to supposing that the mathematicians in question made true claims. We will show how these challenges can be addressed and overcome.
15:30
Equivariant log concavity and representation stability
Abstract
June Huh proved in 2012 that the Betti numbers of the complement of a complex hyperplane arrangement form a log concave sequence. But what if the arrangement has symmetries, and we regard the cohomology as a representation of the symmetry group? The motivating example is the braid arrangement, where the complement is the configuration space of n points in the plane, and the symmetric group acts by permuting the points. I will present an equivariant log concavity conjecture, and show that one can use representation stability to prove infinitely many cases of this conjecture for configuration spaces.