Wed, 01 Nov 2023

16:00 - 17:00
L6

Topology and dynamics on the space of subgroups

Pénélope Azuelos
(University of Bristol)
Abstract

The space of subgroups of a countable group is a compact topological space which encodes many of the properties of its non-free actions. We will discuss some approaches to studying the Cantor-Bendixson decomposition of this space in the context of hyperbolic groups and groups which act (nicely) on trees. We will also give some conditions under which the conjugation action on the perfect kernel is highly topologically transitive and see how this can be applied to find new examples of groups (including all virtually compact special groups) which admit faithful transitive amenable actions. This is joint work with Damien Gaboriau.

Wed, 18 Oct 2023

16:00 - 17:00
L6

Fibring in manifolds and groups

Monika Kudlinska
(University of Oxford)
Abstract

Algebraic fibring is the group-theoretic analogue of fibration over the circle for manifolds. Generalising the work of Agol on hyperbolic 3-manifolds, Kielak showed that many groups virtually fibre. In this talk we will discuss the geometry of groups which fibre, with some fun applications to Poincare duality groups - groups whose homology and cohomology invariants satisfy a Poincare-Lefschetz type duality, like those of manifolds - as well as to exotic subgroups of Gromov hyperbolic groups. No prior knowledge of these topics will be assumed.

Disclaimer: This talk will contain many manifolds.

Tue, 17 Oct 2023

16:00 - 17:00
L6

Limiting spectral distributions of random matrices arising in neural networks

Ouns El Harzli
Abstract

We study the distribution of eigenvalues of kernel random matrices where each element is the empirical covariance between the feature map evaluations of a random fully-connected neural network. We show that, under mild assumptions on the non-linear activation function, namely Lipschitz continuity and measurability, the limiting spectral distribution can be written as successive free multiplicative convolutions between the Marchenko-Pastur law and a nonrandom measure specific to the neural network. The latter has no known analytical expression but can be simulated empirically, separately from the random matrices of interest.

Wed, 11 Oct 2023
16:00
L6

Reasons to be accessible

Joseph MacManus
(University of Oxford)
Abstract

If some structure, mathematical or otherwise, is giving you grief, then often the first thing to do is to attempt to break the offending object down into (finitely many) simpler pieces.

In group theory, when we speak of questions of *accessibility* we are referring to the ability to achieve precisely this. The idea of an 'accessible group' was first coined by Terry Wall in the 70s, and since then has left quite a mark on our field (and others). In this talk I will introduce the toolbox required to study accessibility, and walk you and your groups through some reasons to be accessible.

Tue, 05 Dec 2023

14:00 - 15:00
L6

Representation type of cyclotomic quiver Hecke algebras

Qi Wang
(Tsinghua University)
Abstract

One of the fundamental problems in representation theory is determining the representation type of algebras. In this talk, we will introduce the representation type of cyclotomic quiver Hecke algebras, also known as cyclotomic Khovanov-Lauda-Rouquier algebras, especially in affine type A and affine type C. Our main result relies on novel constructions of the maximal dominant weights of integrable highest weight modules over quantum groups. This talk is based on collaborations with Susumu Ariki, Berta Hudak, and Linliang Song.

Tue, 28 Nov 2023

16:00 - 17:00
L6

Random tree encodings and snakes

Christina Goldschmidt
(University of Oxford)
Abstract

There are several functional encodings of random trees which are commonly used to prove (among other things) scaling limit results.  We consider two of these, the height process and Lukasiewicz path, in the classical setting of a branching process tree with critical offspring distribution of finite variance, conditioned to have n vertices.  These processes converge jointly in distribution after rescaling by n^{-1/2} to constant multiples of the same standard Brownian excursion, as n goes to infinity.  Their difference (taken with the appropriate constants), however, is a nice example of a discrete snake whose displacements are deterministic given the vertex degrees; to quote Marckert, it may be thought of as a “measure of internal complexity of the tree”.  We prove that this discrete snake converges on rescaling by n^{-1/4} to the Brownian snake driven by a Brownian excursion.  We believe that our methods should also extend to prove convergence of a broad family of other “globally centred” discrete snakes which seem not to be susceptible to the methods of proof employed in earlier works of Marckert and Janson.

This is joint work in progress with Louigi Addario-Berry, Serte Donderwinkel and Rivka Mitchell.

 

Tue, 14 Nov 2023

16:00 - 17:00
L6

Percolation phase transition for the vacant set of random walk

Pierre-François Rodriguez
(Imperial College London)
Abstract

The vacant set of the random walk on the torus undergoes a percolation phase transition at Poissonian timescales in dimensions 3 and higher. The talk will review this phenomenon and discuss recent progress regarding the nature of the transition, both for this model and its infinite-volume limit, the vacant set of random interlacements, introduced by Sznitman in Ann. Math., 171 (2010), 2039–2087. The discussion will lead up to recent progress regarding the long purported equality of several critical parameters naturally associated to the transition. 

 

Tue, 31 Oct 2023

16:00 - 17:00
L6

Bounding the Large Deviations in Selberg's Central Limit Theorem

Louis-Pierre Arguin
(University of Oxford)
Abstract

It was proved by Selberg's in the 1940's that the typical values of the logarithm of the Riemann zeta function on the critical line is distributed like a complex Gaussian random variable. In this talk, I will present recent work with Emma Bailey that extends the Gaussian behavior for the real part to the large deviation regime. This gives a new proof of unconditional upper bounds of the $2k$-moments of zeta for $0\leq k\leq 2$, and lower bounds for $k>0$. I will also discuss the connections with random matrix theory and with the Moments Conjecture of Keating & Snaith. 

 

Tue, 10 Oct 2023

16:00 - 17:00
L6

Solving spin systems — the Babylonian way

Nicola Kistler
(Goethe University Frankfurt)
Abstract
The replica method, together with Parisi symmetry breaking mechanism, is a powerful tool which allows to compute the limiting free energy of any mean field disordered system. Unfortunately, the tool is dramatically flawed from a mathematical point of view. I will discuss a truly elementary procedure which allows to rigorously implement two (out of three) steps of the procedure, and which allows to represent the free energy of virtually any model from statistical mechanics as a Gaussian mixture model. I will then conclude with some remarks on the ensuing “Babylonian formulas” in relation with : 
1) work by Dellacherie-Martinez-San Martin on M-matrices, potential theory and ultrametricity, the latter being the key yet unjustified assumption of the whole Parisi theory; 
2) work of Mezard-Virasoro suggesting that the onset of scales and the universal hierarchical self-organisation of random systems is intimately linked to hidden geometrical properties of large random matrices which satisfy rules reminiscent of the popular SUDOKU game.
Tue, 23 Jan 2024

14:30 - 15:00
L6

Manifold-Free Riemannian Optimization

Boris Shustin
(Mathematical Institute (University of Oxford))
Abstract

Optimization problems constrained to a smooth manifold can be solved via the framework of Riemannian optimization. To that end, a geometrical description of the constraining manifold, e.g., tangent spaces, retractions, and cost function gradients, is required. In this talk, we present a novel approach that allows performing approximate Riemannian optimization based on a manifold learning technique, in cases where only a noiseless sample set of the cost function and the manifold’s intrinsic dimension are available.

Subscribe to L6